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Preface

This text started out as a revised version of Buildings by the second-named
author [53], but it has grown into a much more voluminous book. The earlier
book was intended to give a short, friendly, elementary introduction to the the-
ory, accessible to readers with a minimal background. Moreover, it approached
buildings from only one point of view, sometimes called the “old-fashioned”
approach: A building is a simplicial complex with certain properties.

The current book includes all the material of the earlier one, but we have
added a lot. In particular, we have included the “modern” (or “W-metric”)
approach to buildings, which looks quite different from the old-fashioned ap-
proach but is equivalent to it. This has become increasingly important in the
theory and applications of buildings. We have also added a thorough treat-
ment of the Moufang property, which occupies two chapters. And we have
added many new exercises and illustrations. Some of the exercises have hints
or solutions in the back of the book. A more extensive set of solutions is avail-
able in a separate solutions manual, which may be obtained from Springer’s
Mathematics Editorial Department.

We have tried to add the new material in such a way that readers who are
content with the old-fashioned approach can still get an elementary treatment
of it by reading selected chapters or sections. In particular, many readers will
want to omit the optional sections (marked with a star). The introduction
below provides more detailed guidance to the reader.

In spite of the fact that the book has almost quadrupled in size, we were
still not able to cover all important aspects of the theory of buildings. For
example, we give very little detail concerning the connections with incidence
geometry. And we do not prove Tits’s fundamental classification theorems
for spherical and Euclidean buildings. Fortunately, the recent books of Weiss
[281,283] treat these classification theorems thoroughly.

Applications of buildings to various aspects of group theory occur in several
chapters of the book, starting in Chapter 6. In addition, Chapter 13 is devoted
to applications to the cohomology theory of groups, while Chapter 14 sketches
a variety of other applications.



viii Preface

Most of the material in this book is due to Jacques Tits, who originated
the theory of buildings. It has been a pleasure studying Tits’s work. We were
especially pleased to learn, while this book was in the final stages of produc-
tion, that Tits was named as a corecipient of the 2008 Abel prize. The citation
states:

Tits created a new and highly influential vision of groups as geomet-
ric objects. He introduced what is now known as a Tits building,
which encodes in geometric terms the algebraic structure of linear
groups. The theory of buildings is a central unifying principle with
an amazing range of applications. ...

We hope that our exposition helps make Tits’s beautiful ideas accessible to a
broad mathematical audience.

We are very grateful to Pierre-Emmanuel Caprace, Ralf Gramlich, Bill
Kantor, Bernhard Miihlherr, Johannes Rauh, Hendrik Van Maldeghem, and
Richard Weiss for many helpful comments on a preliminary draft of this book.
We would also like to thank all the people who helped us with the applications
of buildings that we discuss in Chapter 14; their names are mentioned in the
introduction to that chapter.

Charlottesville, VA, and Ithaca, NY Peter Abramenko
June 2008 Kenneth S. Brown
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Introduction

Buildings were introduced by Jacques Tits in order to provide a unified geo-
metric framework for understanding semisimple complex Lie groups and,
later, semisimple algebraic groups over an arbitrary field. The definition
evolved gradually during the 1950s and 1960s and reached a mature form in
about 1965. Tits outlined the theory in a 1965 Bourbaki Seminar exposé [243]
and gave a full account in [247]. At that time, Tits thought of a building as a
simplicial complex with a family of subcomplexes called apartments, subject
to a few axioms that will be stated in Chapter 4. Each apartment is made
up of chambers, which are the top-dimensional simplices. This viewpoint is
sometimes called the “old-fashioned approach” to buildings, but we will use
the more neutral phrase simplicial approach.

In the more “modern” approach, introduced by Tits in a 1981 paper [255],
one forgets about all simplices except the chambers, and one forgets about
apartments. The definition is recast entirely in terms of objects called chamber
systems. For lack of a better term, we will refer to this as the combinatorial
approach to buildings. The definition from this point of view also evolved over
a period of years, and it reached a mature form in the late 1980s. An impor-
tant catalyst was the theory of twin buildings, which was being developed
by Ronan and Tits. The final version of the combinatorial definition can be
found in [261], where a building is viewed as a set C (the chambers), together
with a Weyl-group-valued distance function subject to a few axioms.

A third way of thinking about buildings, which we call the metric approach,
is gotten by taking geometric realizations of the structures described in the
previous two paragraphs. It turns out that this can always be done so as to
obtain a metric space with nice geometric properties. The possibility of doing
this has been known for a long time in special cases where the apartments are
spheres or Euclidean spaces. But M. Davis [88] discovered much more recently
that it can be done in general. In this approach to buildings, apartments again
play a prominent role but are viewed as metric spaces rather than simplicial
complexes.
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The three approaches to buildings are distinguished by how one thinks of
a chamber. In the simplicial approach, chambers are maximal simplices. In
the combinatorial approach, chambers are just elements of an abstract set, or
vertices of a graph. And in the metric approach, chambers are metric spaces.

Our goal in this book is to treat buildings from all three of these points
of view. The various approaches complement one another and are all useful.
On the other hand, we recognize that some readers may prefer one particu-
lar viewpoint. We have therefore tried to create more than one path through
the book so that, for example, the reader interested only in the combinato-
rial approach can learn the basics without having to spend too much time
studying buildings as simplicial complexes. More detailed guidance is given in
Section 0.9.

The remainder of this introduction is intended to provide an overview of
the various ways of thinking about buildings, as well as a guide to the rest of
the book. The reader need not be concerned about unexplained terminology
or notation; we will start from scratch in Chapter 1.

All three approaches to buildings start with Coxeter groups.

0.1 Coxeter Groups and Coxeter Complexes

A Cozeter group of rank n is a group generated by n elements of order 2,
subject to relations that give the orders of the pairwise products of the gen-
erators. Thus the group of order 2 is a Coxeter group of rank 1, and the
dihedral group Dy, of order 2m (m > 2) is a Coxeter group of rank 2, with
presentation

Doy = (s,t;82 =t =(st)" =1) .

[Warning: Some mathematicians, following the standard notation of crystal-
lography, write D,, instead of Da,,.] The infinite dihedral group

Dm:<s,t;52:t2:1>

is also a rank-2 Coxeter group; there is no relation for the product st, because it
has infinite order. Readers who have studied Lie theory have seen Weyl groups,
which are the classical examples of (finite) Coxeter groups. For example, the
symmetric group S3 on 3 letters, which is the same as the dihedral group of
order 6, is the Weyl group of type As. And the symmetric group S; on 4
letters is the Weyl group of type Az, with presentation

Sy=(s,tiu;s®=1t>=u"=(st)’ = (tu)® = (su)®> =1) .

Certain infinite Coxeter groups also arise in Lie theory, as affine Weyl groups.
For example, D, is the affine Weyl group of type A, and the Coxeter group W
with presentation

W= {(stiu;s*=t>=u>=(st)° = (tu)® = (su)’ = 1) (0.1)



0.1 Coxeter Groups and Coxeter Complexes 3

is the affine Weyl group of type As.

The given set S of generators of order 2 should be viewed as part of the
structure, but one often suppresses it for simplicity. When we need to be
precise, we will talk about the Cozeter system (W, S) rather than the Coxeter
group W. The system (W, S) is said to be reducible if S admits a partition
S = S’ 115" such that all elements of S’ commute with all elements of S”.
In this case W splits as a direct product W’ x W' of two Coxeter groups of
lower rank.

Every finite Coxeter group can be realized in a canonical way as a group
of orthogonal transformations of Euclidean space, with the generators of or-
der 2 acting as reflections with respect to hyperplanes. Thus Ds,, acts on the
plane, with s and ¢ acting as reflections through lines that meet at an angle
of m/m. And S, admits a reflection representation on 3-dimensional space. To
construct this representation, let S4 act on R* by permuting the coordinates,
and then restrict to the 3-dimensional subspace x1 + x2 + x3 + x4 = 0. More
geometrically, we get this action by viewing Sy as the group of symmetries of
a regular tetrahedron.

Given a finite Coxeter group W and its reflection representation on Euclid-
ean space, consider the set of hyperplanes whose reflections belong to W. If we
cut the unit sphere by these hyperplanes, we get a cell decomposition of the
sphere. The cells turn out to be spherical simplices, and we obtain a simplicial
complex X' = X(W) (or X(W,S)) triangulating the sphere. This is called the
Cozxeter complex associated with W.

For D, acting on the plane, Y is a circle decomposed into 2m arcs.
For the action of S; on R? mentioned above, X is the triangulated 2-sphere
shown in Figure 0.1.* There are 6 reflecting hyperplanes, which cut the sphere
into 24 triangular regions. Combinatorially, X' is the barycentric subdivision
of the boundary of a tetrahedron, as indicated in the picture. (One face of
an inscribed tetrahedron is visible.) The vertex labels in the picture will be
explained in the next section.

A similar but more complicated construction yields a Coxeter complex
associated with an arbitrary Coxeter group W. For example, X(Dy,) is a
triangulated line, with the generators s and ¢ acting as affine reflections with
respect to the endpoints of an edge. And the Coxeter complex for the group W
defined in equation (0.1) is the Euclidean plane, tiled by equilateral triangles.
[The generators s,t,u act as reflections with respect to the sides of one such
triangle.

We will give a detailed treatment of Coxeter groups in Chapters 1 and 2.
The Coxeter complex associated with a finite Coxeter group will arise natu-
rally from our discussion, and this will motivate the general theory of Coxeter
complexes to be given in Chapter 3.

* Figure 0.1 was drawn by Bill Casselman for the article [54]. We are grateful to
him for permission to reproduce it here.
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Fig. 0.1. The Coxeter complex of type Az (drawn by Bill Casselman).

0.2 Buildings as Simplicial Complexes

We begin with the canonical example of a building: Let k be a field and let
A = A(k™) be the abstract simplicial complex whose vertices are the nonzero
proper subspaces of the vector space k™ and whose simplices are the chains

Vi<VWVo<: o<V,

of such subspaces. Every simplex o is contained in a subcomplex, called an
apartment, which is isomorphic to the Coxeter complex associated with the
symmetric group on n letters. To find such an apartment, choose a basis
e1,€s,...,e, of k™ such that every subspace V; that occurs in ¢ is spanned by
some subset of the basis vectors. We then get an apartment containing o by
taking all simplices whose vertices are spanned by subsets of the basis vectors.

Figure 0.1 shows an apartment for the case n = 4. The labels on the
vertices indicate which basis vectors span the corresponding subspace. Thus
the vertex labeled 2 is the line spanned by es, the vertex labeled by both 1
and 2 is the plane spanned by e; and es, and the vertex labeled by 1, 2, and 3
is the 3-dimensional space spanned by e, €2, e3. These three subspaces form
a chain, so they span a 2-simplex in A.

For a second example of a building, take any simplicial tree with no end-
points (i.e., every vertex is incident to at least two edges). Any copy of the real
line in the tree is an apartment, isomorphic to the Coxeter complex associated
with the infinite dihedral group.

As these examples suggest, a building is a simplicial complex that is the
union of “apartments,” each of which is a Coxeter complex. There are axioms
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that specify how the apartments are glued together. They are easy to write
down; the reader anxious to see them can look ahead to Section 4.1. But they
are not easy to grasp intuitively until one works with them for a while.

The simplices of top dimension are called chambers, while those of codi-
mension 1 are called panels. Note that a Coxeter complex is itself a building,
with a single apartment. In fact, Coxeter complexes are precisely the thin
buildings. (This means that every panel is a face of exactly two chambers.)
The more interesting buildings are the thick buildings, i.e., those in which
every panel is a face of at least three chambers. The building A(k™) described
above is thick, and a tree is a thick building if and only if every vertex is
incident to at least three edges.

There is a well-defined Coxeter system (W, S) associated with a building A,
such that the apartments are all isomorphic to X (W, S). One says that A is
a building of type (W, S), and one calls W the Weyl group of A. Much of
the terminology (rank, reducibility, ...) from the theory of Coxeter groups
is carried over to buildings. In addition, one says that a building is spherical
if W is finite (in which case the apartments are triangulated spheres). Thus
A(k™) is an irreducible spherical building of rank n — 1, while a tree with no
endpoints is an irreducible building of rank 2 that is not spherical. (As we will
see later, it is an example of a Fuclidean building.)

0.3 Buildings as W-Metric Spaces

Let A be a building of type (W,S) as above, and let C = C(A) be its set
of chambers. It turns out that there is a natural way to define a W-valued
distance function

0:CxC—-W

that describes the relative position of any two chambers. Intuitively, 6(C, D)
for C, D € C is something like a vector pointing from C' to D. The definition
of § will be given in Section 4.8; all we will say at the moment is that 6(C, D)
contains information about the totality of minimal galleries from C' to D. Here
a gallery is a finite sequence of chambers such that any two consecutive ones
have a common panel, and it is minimal if there is no shorter gallery with the
same first and last chambers. Minimal galleries are combinatorial analogues
of geodesics.

It turns out that one can completely reconstruct the building A from the
data consisting of the Coxeter system (W, .S), the set C of chambers, and the
function ¢. Moreover, one can write down simple axioms that these data must
satisfy in order that they come from a building. The axioms can be found in
Section 5.1.1. Some of them resemble the axioms for an ordinary metric space,
so we will sometimes refer to (C, ) as a W-metric space.

From the combinatorial point of view, then, a building of type (W, .S) is
simply a W-metric space. The most striking thing about this approach is that
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the axioms contain nothing resembling the existence of apartments. Indeed, in
proving that the combinatorial definition is equivalent to the simplicial one,
the key step is to use the axioms to prove the existence of apartments. All of
this will be carried out in Chapter 5.

The combinatorial approach is both more abstract and more elementary
than the simplicial approach. It is more abstract because the geometric in-
tuition is gone. Thus one no longer visualizes chambers as regions cut out
by hyperplanes, and one no longer visualizes apartments as simplicial com-
plexes associated with reflection groups. But it is more elementary because
the underlying mathematical object can be boiled down to nothing more than
a graph with colored edges. [The vertices of the graph are the elements of C,
and two such vertices C, D are connected by an edge with “color” s € S if
and only if 6(C, D) = s.]

0.4 Buildings and Groups

We mentioned above that Tits introduced buildings because of his interest
in Lie groups and algebraic groups. The connection between buildings and
groups is provided by Tits’s theory of BN-pairs, which we treat in Chapter 6.
Given a group G with a pair of subgroups B, N satisfying certain axioms,
one constructs a building on which G operates as a group of automorphisms.
Conversely, a sufficiently nice action of a group on a building yields a BN-pair.

This theory provides a very good illustration of the usefulness of thinking
of buildings as W-metric spaces, so we have chosen to take this point of view
in Chapter 6. An alternative treatment of BN-pairs based on the simplicial
approach can be found in the earlier book by the second author [53], and an
outline is given in Exercise 6.54 in the present book.

0.5 The Moufang Property and the Classification
Theorem

One of Tits’s greatest achievements is the classification of thick, irreducible,
spherical buildings of rank at least 3, proved in [247]. Roughly speaking, the
result is that such buildings correspond to classical groups and simple alge-
braic groups (of relative rank at least 3) defined over an arbitrary field. The
rank restriction cannot be avoided. The buildings of rank 2, for example, in-
clude those of type A, which are essentially the same as projective planes.
And there is no hope of classifying projective planes, even the finite ones.

If, however, one imposes a certain symmetry condition on the buildings
(the so-called Moufang property), then the classification extends to rank 2.
This result is due to Tits and Weiss [262]. In rank > 3 the Moufang property
does not need to be added as a hypothesis because Tits proved that all thick,
irreducible, spherical buildings of rank > 3 have the Moufang property. We
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will study the Moufang property in Chapter 7 for spherical buildings and in
Chapter 8 for more general buildings.

The proof of the classification theorem is long and involved. In this book
(Chapter 9) we only give a rough statement of the theorem, with some pointers
to the literature for readers who want more details.

0.6 Euclidean Buildings

We have seen that spherical buildings arise in connection with algebraic groups
over an arbitrary field. If the field comes equipped with a discrete valuation,
then (under suitable hypotheses on the group) there is a second building, in
which the apartments are Euclidean spaces instead of spheres. Such buildings
are called Fuclidean buildings, or buildings of affine type. We study them
in Chapter 11 after laying the foundations by treating Euclidean reflection
groups and Euclidean Coxeter complexes in Chapter 10. Along the way we
develop the theory of affine Weyl groups alluded to in Section 0.1 above.
Chapter 10 also includes a brief outline of the theory of hyperbolic reflection
groups.

Euclidean buildings, as we will see, admit a canonical metric, which re-
stricts to a Euclidean metric on each apartment. This was introduced and
exploited by Bruhat and Tits [59], who showed further that every Euclidean
building is a CAT(0) space (although they did not use that terminology).
This means that it has metric properties analogous to those of complete sim-
ply connected Riemannian manifolds of nonpositive curvature.

0.7 Buildings as Metric Spaces

M. Davis [88] made the surprising discovery that for every building there
is a geometric realization that admits a CAT(0) metric. This is primarily
of interest in the nonspherical case, so assume that A is a building of type
(W, S) with W infinite. We then have a Coxeter complex X = X(W, S), as we
mentioned above. In the Euclidean case, X' triangulates a Euclidean space, as
in Section 0.6. In general, however, it has no natural geometric structure.

But Davis found a way to truncate X' so as to obtain a different “geomet-
ric realization” of (W, S), which we denote by X4, and which has a natural
CAT(0) metric. It is a subspace of the geometric realization of the simplicial
complex ¥. Returning to our building A, we then get a CAT(0) geometric
realization by replacing each apartment by a copy of Y;. This is the metric-
space approach to buildings mentioned at the beginning of this introduction.
Davis’s theory will be treated in Chapter 12, where we also give a general
procedure for constructing metric realizations of buildings. For example, if
the Weyl group is a hyperbolic reflection group, then there is a realization in
which every apartment is a hyperbolic space.
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0.8 Applications of Buildings

Buildings have many uses beyond those originally envisaged by Tits. For ex-
ample, the authors of this book first got interested in buildings because of
applications to the cohomology theory of groups. We survey the applications
to group cohomology in Chapter 13, and we mention a variety of other appli-
cations in Chapter 14.

0.9 A Guide for the Reader

Chapters 1-4, 6, 10, 11, and 13 constitute a revised and enlarged version of
the original book [53]. Readers who want an elementary introduction in the
spirit of that book, with buildings always viewed as simplicial complexes, can
concentrate on those chapters (with perhaps an occasional glance at Chapter 5
for terminology). Such readers may also want to omit Sections 2.5 and 3.6
on first reading, returning to them later as necessary. In addition, there are
several optional sections (marked with a star) that may be omitted.

At the other extreme, readers who are primarily interested in the combina-
torial approach to buildings can read Chapters 1, 2, and 5, with an occasional
glance at Chapters 3 and 4 for motivation or terminology.

Chapters 7 and 8 treat the Moufang property. Chapter 7 covers the spher-
ical case and requires only the simplicial approach. Chapter 8, on the other
hand, is more advanced. It requries both the simplicial and the combinatorial
approaches, and it relies on some of the earlier starred sections that are not
needed elsewhere in the book. That whole chapter can be viewed as optional
and may safely be omitted. We have tried, nevertheless, to write that chapter
at the same level as the rest of the book in order to make this material acces-
sible. Chapter 9 (on the classification theorem) should make sense to readers
who know either the simplicial approach or the combinatorial approach to
buildings. Chapter 11 (Euclidean buildings), on the other hand, requires fa-
miliarity with the simplicial approach.

Chapter 12, on metric realizations of buildings, can technically be ap-
proached either from the simplicial or the combinatorial viewpoint. As a
practical matter, however, this chapter makes use of Euclidean buildings for
motivation, so it may be difficult reading for someone who knows only the com-
binatorial approach. Finally, Chapters 13 and 14 (on applications of buildings)
definitely require the simplicial approach.
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Finite Reflection Groups

This book is about connections between groups and geometry. We begin by
considering groups of isometries of Euclidean space generated by hyperplane
reflections. In order to avoid technicalities in this introductory chapter, we
confine our attention to finite groups and we require our reflections to be with
respect to linear hyperplanes (i.e., hyperplanes passing through the origin).
We will generalize this in Chapter 10, replacing “finite” by “discrete” and
“linear” by “affine.”

1.1 Definitions

Let V be a Euclidean vector space, i.e., a finite-dimensional real vector space
with an inner product.

Definition 1.1. A hyperplane in V is a subspace H of codimension 1. The
reflection with respect to H is the linear transformation sy : V' — V that is the
identity on H and is multiplication by —1 on the (1-dimensional) orthogonal
complement H+ of H. If a is a nonzero vector in H*, so that H = a*, we
will sometimes write s,, instead of sg.

Example 1.2. Let s: R” — R interchange the first two coordinates, i.e.,
S($1,$2, T3y -- 7mn) = (xZ,mla T3,... 7mn) .

Equivalently, s transposes the first two standard basis vectors e1, e and fixes
the others. Then s is the identity on the hyperplane z; — x5 = 0, which is
the orthogonal complement of a := e; — ez, and s(a) = —a. So s is the
reflection s,,.

For future reference, we derive a formula for s,. Given z € V| write x =
h+ Aa with h € H and A € R. Taking the inner product of both sides with «,
we obtain A = (o, x)/{«a, ), where the angle brackets denote the inner product
in V. Then s4(z) = h — Aa = 2 — 2Aa, and hence
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a. (1.1)

In words, this says that the mirror image of 2 with respect to a is obtained by
subtracting twice the component of x in the direction of «, thereby changing
the sign of that component. Suppose, for instance, that « = e; — ey as in
Example 1.2; then (o, ) = 2, so equation (1.1) becomes

Sa(x) =2 — (o, T)ax .

Definition 1.3. A finite reflection group is a finite group W of invertible
linear transformations of V' generated by reflections sy, where H ranges over
a set of hyperplanes.

The group law is of course composition. We will sometimes refer to the pair
(W, V) as a finite reflection group when it is necessary to emphasize the vector
space V on which W acts.

The requirement that W be finite is a very strong one. Suppose, for in-
stance, that dim V' = 2 and that W is generated by two reflections s := sy
and ' := sgs. Then the rotation ss’ € W has infinite order (and hence W
is infinite) unless the angle between the lines H and H’ is a rational mul-
tiple of 7. The following criterion is often used to verify that a given group
generated by reflections is finite:

Lemma 1.4. Let @ be a finite set of nonzero vectors in V', and let W be the
group generated by the reflections s, (o € @). If @ is invariant under the
action of W, then W 1is finite.

Proof. We will show that W is isomorphic to a group of permutations of the
finite set @. Let V7 be the subspace of V' spanned by @, and let Vj be its
orthogonal complement. Then Vo = (), cq o, which is the fixed-point set
VW= {v eV |wv=uvforall w € W}. In view of the orthogonal decompo-
sition V' = Vy @ V4, it follows that an element of W is completely determined
by its action on V; and hence by its action on . a

The group W defined in the lemma will be denoted by Wg. Such groups
arise classically in the theory of Lie algebras, where @ is the root system
associated with a complex semisimple Lie algebra and Wy is the corresponding
Weyl group. (This explains the use of the letter W for a finite reflection group.)

We will not need the precise definition of “root system,” but the interested
reader can find it in Appendix B. For now, we need to know only that a root
system satisfies the hypotheses of Lemma 1.4 as well as an integrality condition
that forces Wy to leave a lattice invariant. It will be convenient to have a name
for sets @ as in the lemma that are not necessarily root systems in the classical
sense.
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Definition 1.5. A set & satisfying the hypotheses of Lemma 1.4 will be called
a generalized root system. The elements of @ will be called roots. We will
always assume (without loss of generality) that our generalized root systems
are reduced, in the sense that +a (for o € @) are the only scalar multiples of «
that are again roots. Thus there is exactly one pair +a for each generating
reflection in the statement of Lemma 1.4.

To emphasize the distinction between generalized root systems and the classi-
cal ones that leave a lattice invariant, we will sometimes refer to the classical
ones as crystallographic root systems.

It is also convenient to have some terminology for the sort of decomposition
of V that arose in the proof of Lemma 1.4. Let W be a group generated by
reflections sy (H € H), where H is a set of hyperplanes. Let V be the fixed-

point set
VW= H.
HeH

Definition 1.6. We call Vj the inessential part of V', and we call its orthogo-
nal complement V; the essential part of V. The pair (W, V) is called essential
if Vi =V, or, equivalently, if V[ = 0. The dimension of V; is called the rank
of the finite reflection group W.

The study of a general (W, V) is easily reduced to the essential case. Indeed,
Vi is W-invariant since Vj is, and clearly (V1) = 0; so we have an orthogonal
decomposition V' = Vy @ Vp, where the action of W is trivial on the first
summand and essential on the second. We may therefore identify W with
a group acting on Vi, and as such, W is essential (and still generated by
reflections). If W is the group Wy associated with a generalized root system,
then W is essential if and only if @ spans V.

Exercise 1.7. Show that every finite reflection group W has the form Wy for
some generalized root system .

1.2 Examples

There are two classical families of examples of finite reflection groups. The
first, as we have already indicated, consists of Weyl groups of (crystallo-
graphic) root systems. The second consists of symmetry groups of regular
solids. We will not assume that the reader knows anything about either of
these two subjects. But it will be convenient to use the language of root sys-
tems or regular solids informally as we discuss examples. It is a fact that
all finite reflection groups can be explained in terms of one or both of these
theories; we will return to this in the next section.
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Example 1.8. The group W of order 2 generated by a single reflection s, is
a finite reflection group of rank 1. After passing to the essential part of V', we
may identify W with the group {£1} acting on R by multiplication. It is the
group of symmetries of the regular solid [—1, 1] in R. Tt is also the Weyl group
of the root system @ := {£a}, which is called the root system of type A;.

Example 1.9. Let V' be 2-dimensional, and choose two hyperplanes (lines)
that intersect at an angle of 7/m for some integer m > 2. Let s and t be the
corresponding reflections and let W be the group (s,t) they generate. [Here
and throughout this book we use angle brackets to denote the group generated
by a given set.] Then the product p := st is a rotation through an angle of
27 /m and hence is of order m. Moreover, s conjugates p to s(st)s =ts = p~!
and similarly for ¢, so the cyclic subgroup C' := {p) of order m is normal in W.
Finally, the quotient W/C' is easily seen to be of order 2; hence W is indeed
a finite reflection group, of order 2m.

This group W is called the dihedral group of order 2m, and we will denote
it by Dap,. If m > 3, W is the group of symmetries of a regular m-gon. If
m = 3, 4, or 6, then W can also be described as the Weyl group of a root
system @, said to be of type Ag, Ba, or Ga, respectively. The root system of
type Ag (m = 3) consists of 6 equally spaced vectors of the same length, as
shown in Figure 1.1, which also shows the three reflecting hyperplanes (lines).
There are two oppositely oriented root vectors for each hyperplane. To get

Fig. 1.1. The root system of type A2 and the reflecting hyperplanes.

By and Gy (m = 4 and m = 6), we can take m equally spaced unit vectors
together with the sum of any two cyclically consecutive ones, as shown in
Figure 1.2

Of course, we can always get Do, from the generalized root system con-
sisting of 2m equally spaced unit vectors; but this is not crystallographic for
m > 3.

Example 1.10. Let W be the group of linear transformations of R (n > 2)
that permute the standard basis vectors ey, es,...,e,. Thus W is isomorphic
to the symmetric group S,, on n letters and can be identified with the group
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Fig. 1.2. The root systems of type By and Go.

of n X n permutation matrices. It is generated by the (g) transpositions s;;
(¢ < j), where s;; interchanges the ith and jth coordinates, so it is a finite
reflection group (see Example 1.2). Note that (W, R™) is not essential. In fact
VW is the line x; = x3 = --- = x,, spanned by the vector e := (1,1,...,1).
So the subspace V7 of R™ on which W is essential is the (n — 1)-dimensional
subspace et defined by 2?21 x; = 0, whence W has rank n — 1.

The interested reader can verify that W is the group of symmetries of
a regular (n — 1)-simplex in V;. [Hint: The convex hull o of ey,...,e, is a
regular (n — 1)-simplex in the affine hyperplane Y x; = 1, which is parallel
to V1. The desired regular simplex in V; is now obtained from o via the
translation x — x — b, where b is the barycenter of o.] W is also the Weyl
group of a root system in V7, called the root system of type A,,_1. It consists
of the n(n — 1) vectors e; — e; (i # j).

When n = 2, this example reduces to Example 1.8; when n = 3, it reduces
to Example 1.9 with m = 3 (after we pass to the essential part), i.e., W
is dihedral of order 6. For n = 4, Figure 1.3 shows the unit sphere in the

Fig. 1.3. The hyperplanes for the reflection group of type As.
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3-dimensional space V; on which W is essential; the 6 = (‘21) planes x; = x;
(corresponding to the reflections s;;) cut the sphere in the solid great circles.
The dotted great circle represents an equator and does not correspond to a
reflecting hyperplane. [Note: Figure 1.3 is a schematic picture; it accurately
shows the combinatorics, but it distorts the geometry. See Figure 0.1 for a
more accurate picture.]

Note that the hyperplanes induce a triangulation of the sphere as the
barycentric subdivision of the boundary of a tetrahedron. The black vertices
are the vertices of the original tetrahedron (only 3 of which are visible in the
hemisphere shown in the picture); the gray vertices (of which 3 are visible)
are the barycenters of the edges of the tetrahedron; and the white vertices
(of which one is visible) are the barycenters of the 2-dimensional faces of the
tetrahedron. We will see later that this generalizes to arbitrary n: the reflecting
hyperplanes triangulate the sphere in V; as the barycentric subdivision of the
boundary of an (n — 1)-simplex. See Exercise 1.112.

Example 1.11. Let W be the group of linear transformations of R (n > 1)
leaving invariant the set {+e;} of standard basis vectors and their negatives.
In terms of matrices, W can be viewed as the group of n X n monomial
matrices whose nonzero entries are £1. [Recall that a monomial matriz is one
with exactly one nonzero element in every row and every column.] Elements
of W are sometimes called “signed permutations.” The group W is generated
by transpositions s;; as above, together with reflections t1,...,t,, where ¢;
changes the sign of the ith coordinate (i.e., ¢; is the reflection in the hyperplane
2; = 0). Hence W is a finite reflection group of order 2"n!, and this time it is
essential.

Once again, the interested reader is invited to verify that W is the group
of symmetries of a regular solid in R™, which one can take to be the n-cube
[—1,1]™. Alternatively, take the solid to be the convex hull of the 2n vectors
{+£e;}; this is a “hyperoctahedron.” [The hyperoctahedron is the dual of the
cube, which means that it is the convex hull of the barycenters of the faces of
the cube. Since a solid and its dual have the same symmetry group, it makes
no difference which one we choose. We had no reason to mention this in our
previous examples because the dual of a regular m-gon is again a regular
m-gon, and the dual of a regular simplex is again a regular simplex.]

And once again, W is the Weyl group of a root system, called the root
system of type B,,, consisting of the vectors +e; = e; (i # j) together with
the vectors +e;. Alternatively, W can be described as the Weyl group of the
root system of type C,,, consisting of the vectors +e; & e; (i # j) together
with the vectors +2e;; this is dual to type B,,. [Every root system & has a
“dual,” as we explain in Appendix B. A root system and its dual have the
same Weyl group. The root systems mentioned in Examples 1.8-1.10, like the
regular solids, are self-dual, so this issue did not arise.]

When n = 1 this example reduces to Example 1.8; when n = 2 it reduces
to Example 1.9 with m = 4, i.e., W is dihedral of order 8.
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Exercise 1.12. Implicit in the last example is the fact that W contains the
reflection s, where a := e; + e; (i # j). Verify this by giving an explicit
description of s, in terms of coordinates and/or in terms of its effect on the
standard basis vectors.

Example 1.13. Let @ be the set of vectors +e; & e; (i # j) in R" (n > 2).
This is the root system of type D,,. The corresponding Weyl group Wy is
a subgroup of index 2 in the group W of Example 1.11. If we think of the
elements of W as monomial matrices whose nonzero elements are £1, then
W consists of those elements with an even number of minus signs.

When n = 2, this example reduces to Example 1.9 with m = 2, i.e., Wy
is dihedral of order 4. When n = 3, Wy is isomorphic to the Weyl group of
type As; see Exercise 1.99.

We close this section by mentioning an uninteresting way of constructing
new examples of finite reflection groups from given ones:

Exercise 1.14. Given finite reflection groups (W', V') and (W"”, V"), show
that the direct product W := W’ x W can be realized as a finite reflection
group acting on the orthogonal direct sum V := V' ¢ V".

Definition 1.15. A finite reflection group (W, V) is called reducible if it de-
composes as in the exercise, with V' and V" nontrivial, and it is called irre-
ducible otherwise.

We will see later that an essential finite reflection group always admits a
canonical decomposition into “irreducible components” (Exercise 1.100). For
example, the Weyl group of type Dy decomposes as a product of two copies
of the Weyl group of type A;.

1.3 Classification

Finite reflection groups (W, V) have been completely classified up to iso-
morphism. In this section we list them briefly; see Bourbaki [44], Grove—
Benson [124], or Humphreys [133] for more details. We will confine ourselves
to the reflection groups that are essential, irreducible, and nontrivial; all oth-
ers are obtained from these by taking direct sums and, possibly, adding an
extra summand on which the group acts trivially.

First, we list three infinite families of reflection groups:

e Type A, (n>1): Here W is the symmetric group on n + 1 letters, acting
as in Example 1.10 on a certain n-dimensional subspace of R"*!. This
group is the group of symmetries of a regular n-simplex, and it can also
be described as the Weyl group of the root system of type A,,.
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e Type C,, also called type B,, (n > 2): This is the group W of signed per-
mutations acting on R™ as in Example 1.11. (We require n > 2 because
Example 1.11 with n = 1 gives the group of type A; again.) The group
W is the group of symmetries of the n-cube (or n-dimensional hyperocta-
hedron); it is also the Weyl group of the root system of type B,, and the
root system of type C,. Following a common convention in the theory of
buildings, we will usually call W the reflection group of type C,,, but we
may occasionally call it the reflection group of type B,,.

e Type D, (n > 4): This is the Weyl group of the root system of type D,
that we saw in Example 1.13. It does not correspond to any regular solid.

Next, there are seven exceptional groups:

e TypeE, (n==6,7,8): This is the Weyl group of a root system of the same
name. It does not correspond to any regular solid.

e Type Fy: This is the Weyl group of a root system of the same name; it is
also the group of symmetries of a certain self-dual 24-sided regular solid
in R* whose (3-dimensional) faces are solid octahedra.

e Type Gy: This is the Weyl group of the root system of the same name that
we saw in Example 1.9. It is dihedral of order 12, so we can also describe
it as the group of symmetries of a hexagon.

e Type H,, (n = 3,4): This does not correspond to any root system, but
it is the symmetry group of a regular solid X. When n = 3, X is the
dodecahedron (which has 12 pentagonal faces) or, dually, the icosahedron
(which has 20 triangular faces). When n = 4, X is a 120-sided solid in R*
(with dodecahedral faces) or, dually, a 600-sided solid (with tetrahedral
faces).

Finally, we have the dihedral groups Ds,, (not to be confused with the
groups of type D, listed above). If m = 2, the group is reducible (it is
{£1} x {£1} acting on R @ R). The cases m = 3 and 4 correspond, respec-
tively, to the groups of type A; and Cy. And the case m = 6 corresponds to
the group of type Ga. This leaves:

e Type Iy(m) (m = 5orm > 7): The group W is the dihedral group of
order 2m. It is the symmetry group of a regular m-gon, but it does not
correspond to any root system.

Remarks 1.16. (a) The subscript in the notation for each type is the rank
of the reflection group.

(b) There is also a classification of the irreducible root systems. They are the
root systems mentioned in the discussion above, except that C), should be
included only for n > 3 in order to avoid repetition; see Exercise 1.17.
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(¢) To learn more about the regular solids mentioned above, see Coxeter [86]
or Lyndon [156] or further references cited therein.

Exercise 1.17. Show that the root system of type Cs is the same as that of
type Bo, up to a rotation and a rescaling of the metric.

1.4 Cell Decomposition

Let (W,V) be an essential finite reflection group. The hyperplanes H with
sy € W cut V into polyhedral pieces, which turn out to be cones over sim-
plices. Intersecting these cones with the unit sphere, one obtains a simplicial
decomposition of the sphere. These assertions will be proved in Section 1.5.
(We have already seen an example of it in Figure 1.3.) The purpose of the
present section is to lay the groundwork by studying the polyhedral decom-
position of Euclidean space induced by an arbitrary finite set H of hyper-
planes. Following standard terminology, we will also say that H is a hyper-
plane arrangement. In this chapter hyperplane arrangements will always be
assumed to be finite and to consist of linear hyperplanes. We will have occa-
sion to consider infinite arrangements of affine hyperplanes in Chapter 10.

This section is long because it develops from scratch some basic facts
about polyhedral geometry. Readers who are already familiar with these facts
or are willing to accept them as “intuitively obvious” can read the first few
subsections quickly for notation and terminology. Section 1.4.6, however, is
likely to be new for many readers.

Throughout this section V' will denote a finite-dimensional real vector
space, and ‘H = {H;},.; will denote a hyperplane arrangement in V' indexed
by a finite set I. We assume the hyperplanes are listed without repetition, i.e.,

HZ#HJfOT’L#j

1.4.1 Cells

For each i € I, let f;: V — R be a nonzero linear function such that H;
is defined by f; = 0. The function f; is uniquely determined by H;, up to
multiplication by a nonzero scalar.

Definition 1.18. A cell in V' with respect to H is a nonempty set A obtained
by choosing for each i € I a sign o; € {+,—,0} and specifying f; = o;. [Here
“fi = 47 means f; > 0, and similarly for “f; = —.”] Thus A is defined by
homogeneous linear equalities or strict inequalities, one for each hyperplane.
In more geometric language, we have

A= Ui, (1.2)

iel
where U; is either H; or one of the open half-spaces of V' determined by H;.
The sequence o := (0;);cs that encodes the definition of A is called the sign



18 1 Finite Reflection Groups

sequence of A and is denoted by o(A). The cells such that o; # 0 for all i are
called chambers.

Note that the chambers are nonempty convex open sets that partition
the complement V'~ J,c; Hi, so they are the connected components of the
complement. In general, a cell A is open relative to its support, which is defined
to be the subspace

supp A := ﬂ H;
oi(A)=0
of V. Equivalently, supp A is the subspace defined by the equalities f; = 0
that occur in the description of A. Since A is open in supp A4, we can also
describe supp A as the linear span of A. The dimension of A is, by definition,
the dimension of its support.

Definition 1.19. We denote by X'(H) the set of all cells and by C(H) the
subset consisting of all chambers.

The cells A form a partition of V into disjoint convex cones, where a cone
is a subset closed under multiplication by positive scalars. Figure 1.4 shows
a simple example, where H consists of three lines in the plane, numbered 1,
2, and 3. There are 13 cells: 6 chambers (open sectors), 6 open rays, and the
cell consisting of the origin. Sign sequences for the chambers are indicated,
based on the assumption that the f; are chosen to be positive on the cham-
ber labeled +++. The reader is advised to fill in the sign sequences for the
lower-dimensional cells; for example, the ray separating the chambers +++
and +—+ has sign sequence +0+.

3
+—— +—+
1 2
——— +++
2 1
—+— —++
3

Fig. 1.4. Three lines in the plane.

For another example, let H consist of the 3 coordinate planes in R3. There
are 27 cells, one for each possible sign sequence: 8 open orthants, which are the
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chambers, 12 open sectors (4 orthants in each coordinate plane), 6 open rays
(two in each coordinate line), and the origin. A second rank-3 example was
drawn in Figure 1.3; there are 6 planes, and the picture shows the intersections
of the cells with the unit sphere. There are 24 chambers, corresponding to
triangular regions on the sphere; 36 two-dimensional faces, corresponding to
edges on the sphere; 14 rays, corresponding to the vertices on the sphere; and
the origin, corresponding to the empty subset of the sphere.

1.4.2 Closed Cells and the Face Relation

We begin by defining a partial order of the set X' := X(H) of cells, so that X
becomes a poset (partially ordered set).

Definition 1.20. Given cells A, B € X, we say that B is a face of A, and
we write B < A, if for each i € I either 0;(B) = 0 or 0;(B) = 0;(A).
More concisely, the ordering on cells is given by the coordinatewise ordering
on sign sequences, where we make the convention that + and — are bigger
than 0. In terms of linear equalities and inequalities, B < A if and only if
the description of B is obtained from that of A by changing zero or more
inequalities to equalities.

For example, the chamber +++ in Figure 1.4 has four faces: the chamber
itself, the rays +0+ and 04+, and the origin (with sign sequence 000).

Definition 1.21. Given a cell A, let A be the set obtained by replacing the
open half-spaces that occur in equation (1.2) by the corresponding closed
half-spaces. Equivalently, replace the strict inequalities f; > 0 or f; < 0 in
the description of A by the corresponding weak inequalities f; > 0 or f; < 0.
We call A the closed cell associated to A. The cell A itself, by contrast, will
often be called an open cell, even though it is not in general an open subset
of V. [The more common term is relatively open cell, since, as we have already
noted, A is open in its support and hence in A.]

For example, the closed cell corresponding to each of the chambers in
Figure 1.4 above is a closed sector.

Remark 1.22. Readers familiar with cell complexes may find the term “cell”
confusing, since our closed cells are not topological balls. Whenever confusion
might arise, we will call the cells defined here conical cells. If we assume that
H is essential, by which we mean that (.4, = {0}, then every closed conical
cell is in fact the cone over a topological ball, gotten by intersecting the cell
with a sphere. The proof is left to the interested reader. (See also Section A.2.3
below, where a more precise result will be proved.)

It is immediate from the definitions that

A=) B. (1.3)

B<A
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Since the open cells are disjoint, it follows that the face relation can be char-
acterized in terms of the closed cells:

B<A < BCA.
This shows, in particular, that B = A if and only if B = A. Hence:

Proposition 1.23. The function A — A is a bijection from the open cells to
the closed cells. O

We will find it helpful to have a geometric description of the correspon-
dence between open cells and closed cells that does not refer to H:

Proposition 1.24. Let A be an open cell.

(1) A is the closure of A in' V' (in the sense of point-set topology).
(2) Let L be the linear span of A. Then A is the interior of A in L, i.c., the
largest open subset of L contained in A.

Proof. (1) Clearly A is closed in V, so it contains the closure of A. Conversely,
given y € A, choose x € A and consider the closed line segment from z to ¥,
denoted by [z,y]. Each equality in the description of A holds on the whole
line segment; and each strict inequality holds on the half-open segment [z, y).
So [z,y) € A and hence y is in the closure of A.

(2) Note first that L = supp A; for supp A contains A and is spanned by A,
so it is also spanned by A. We therefore have A C inty,(A) (the latter being
the interior of A in L) since A is open in its support. Conversely, suppose
y € A~ A and consider the segment [z,y] again. Since y ¢ A, there must be
an inequality in the description of A, say f; > 0, such that f;(y) = 0. So if the
line segment is continued past y, we immediately have f; < 0, which means
we have left A (but stayed in L). Hence y ¢ intz,(A). |

Our next observation is that we can give a direct definition of what it
means to be a closed cell, independent of the notion of open cell. Recall that
a closed cell is defined by equalities or weak inequalities, one for each i € I.
Conversely, suppose X is an arbitrary set defined by specifying for each i the
equality f; = 0 or one of the weak inequalities f; > 0 or f; < 0; we will show
that X is a closed cell:

Proposition 1.25. Let X be a set defined by equalities or weak inequalities
as above. Then X 1is a closed cell with respect to 'H.

Proof. Let o; be 0 if f; = 0 on X. Otherwise, either f; > 0on X or f; <0
on X, and we take o; to be 4+ or —, accordingly. [Caution: It is possible that
our original description of X involved an inequality, say f; > 0, but that
nevertheless f; = 0 on X; so o; is 0 in this case.] Let A be the set defined by
the signs o;. If A is nonempty, then it is a cell and X = A. To prove A # (),
choose for each i with o; € {+,—} a vector x; € X with f;(z;) # 0. Let « be
the sum of these vectors (or 0 if there are none). Then z € A. O
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Corollary 1.26. An intersection of closed cells is a closed cell. a

We turn, finally, to the geometric meaning of the face relation. If one
visualizes a cell A in dimension 2 or 3, one sees easily what its faces are,
without knowing the particular system of equalities and inequalities by which
A was defined. Roughly speaking, the faces are the flat pieces into which the
boundary of A decomposes. The following proposition states this precisely:

Proposition 1.27. Let A be a cell. Then two distinct points y,z € A lie in
the same face of A if and only if there is an open line segment containing both
y and z and lying entirely in A. Consequently, the partition of A into faces
depends only on A as a subset of V', and not on the arrangement H.

Proof. Suppose y and z are in the same face B < A. For each condition
fi = o; in the description of B, we can extend the segment [y, z] slightly in
both directions without violating the condition. Since there are only finitely
many such conditions, it follows that B contains an open segment containing
y and z; hence so does A.

Suppose now that y and z are in different faces of A. Then there is some ¢
such that y and z behave differently with respect to f;, say fi(y) > 0 and
fi(2) = 0. If we now continue the segment [y, z] past z, we immediately have
fi <0, so we leave A; hence there is no open segment in A containing both y
and z. O

The significance of this for us is that if we want to understand the poly-
hedral structure of a particular cell A, then we can replace H by any other
hyperplane arrangement for which A is still a cell. We record this for future
reference:

Corollary 1.28. Let A be a cell with respect to H. If A is also a cell with
respect to an arrangement H', then the faces of A defined using H' are the
same as those defined using H. O

In practice, we will want to take a minimal set of hyperplanes for a given A.
In the next subsection we spell out exactly how to do this in case A is a
chamber.

Exercise 1.29. Given A € ¥, show that (Jz- 4 B is a convex open subset
of V. [Suggestion: First draw a picture to see why this is plausible.]

1.4.3 Panels and Walls

Definition 1.30. A cell A with exactly one 0 in its sign sequence is called a
panel. This is equivalent to saying that supp A is a hyperplane, which is then
necessarily in H. If the panel A is a face of a chamber C, then we will also
say that A is a panel of C' and that its support hyperplane H is a wall of C.
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In low-dimensional examples like the one in Figure 1.4, one sees easily
that every chamber is defined by the inequalities corresponding to its walls;
the other inequalities are redundant. We will show that this is always the case.
Fix a chamber C. We say that C is defined by a subset H' C H if C' is defined
by the conditions f; = o;, where i ranges over the indices such that H; € H'.

Lemma 1.31. If H € H is not a wall of C, then C is defined by H' :=
H~{H}.

Proof. Assume, to simplify the notation, that C is defined by the inequalities
fi > 0 for all ¢, and let j be the index such that H = H;. Suppose C' is not
defined by H’. Then removing the inequality f; > 0 results in a set C” strictly
bigger than C. Choose y € C’ ~. C and z € C. Since fj(z) > 0 and f;(y) <0,
there is a point z € (x,y| such that f;(z) = 0. This point z is then in a panel
A of C supported by H, so H is a wall of C. a

Proposition 1.32. Let C be a chamber and let He be its set of walls. Then
C is defined by He, and He is the smallest subset of H with this property.

Proof. 1If C' is defined by H' C H, then we can use H’ to determine the walls
of C by Corollary 1.28; hence H' 2 He. It remains to show that C' is defined
by He. If H contains any H that is not a wall of C', then we can remove it by
Lemma 1.31 to get a smaller defining set H’. Now C' is still a chamber with
respect to H’, and replacing H by H’ does not change the walls. So we may
repeat the process to remove another nonwall, and so on. Since H is finite, we
arrive at He after finitely many steps. a

The proof we just gave made crucial use of the fact that the notion of
“wall” does not depend on the particular defining set of hyperplanes. Here is
a simple intrinsic characterization of the walls:

Proposition 1.33. Let C be a chamber and let H be a linear hyperplane in V.
Then H is a wall of C' if and only if C lies on one side of H and C N H has
nonempty interior in H.

Proof. If H is the support of a panel A of C, then certainly C' lies on one
side of H and C' N H contains A, which is a nonempty open subset of H.
Conversely, suppose H is a hyperplane such that C' lies on one side of H
and C N H has nonempty interior in H. Then C is still a chamber with
respect to HT := H U {H}, so we can use H' to determine the faces of C.
By Proposition 1.25, C N H is a closed cell A with respect to H*, and the
corresponding open cell A is a face of C' because A C C. Since A is contained
in H and has nonempty interior in H, the support of A must be H. Thus A
is a panel of C' and its support H is therefore a wall of C'. O
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Exercises

1.34. This exercise outlines a more direct proof that any chamber is defined
by its walls; fill in the missing details.

Let C' and H¢e be as in Proposition 1.32, and let C’ be the Hc-chamber
containing C. Suppose C’ # C. Choose y € C' . C and = € C, and consider
the line segment [z,y]. By moving y slightly if necessary, we may assume
y ¢ O, so that the segment [z,y] crosses at least one H € H. And by moving
x slightly if necessary, we may assume that the segment never crosses more
than one H at a time. The first H that is crossed as we traverse the segment
starting at x is then a wall of C, contradicting the definition of C.

1.35. Assume that H is essential, as defined in Remark 1.22. Show that every
closed cell A is the closed convex cone generated by the 1-dimensional faces
of A, i.e., every x € A can be expressed as x = > peyyj, where each yy
is in a 1-dimensional face of A. [Note: These 1-dimensional faces are rays.
They therefore correspond to vertices if we think of cells in terms of their
intersections with a sphere as in Remark 1.22.]

1.4.4 Simplicial Cones

Let C be a fixed but arbitrary chamber and let H’ be its set of walls. It will
be convenient to take the index set I for H to be {1,2,...,m} for some m.
For simplicity of notation we will assume that the elements of H' are the
hyperplanes f; =0 for 1 < i <r and that f; >0 on C for 1 <i <m.

Let Vj := ﬂ:;l H;. We call ‘H essential if Vo = 0. There is no loss of gen-
erality in restricting attention to the essential case. For if we set V; := V/Vj,
then the linear functions f; pass to the quotient V7 and define an essential set
of hyperplanes there. And the cells determined by these hyperplanes in V; are
in 1-1 correspondence with the cells in V. More precisely, the cells in V' are
the inverse images in V' of the cells in V;. [Geometrically, then, the cells in V
are simply the cells in V; “fattened up” by a factor R%, where d := dim Vj.]

Note that V is itself a cell, with sign sequence (0,0, ..., 0). It is the smallest
cell, in the sense that it is a face of every cell, so ‘H is essential if and only if
the smallest cell is a point. Note that Vj is also the smallest face of C. Since
the faces of C' can be determined by using H’ instead of H (Section 1.4.2), it
follows that Vo = (,_, Hi.

Assume now that H is essential. Then our last observation says that
ﬂ;zl H; = 0. It follows that » > n := dimV. It is easy to visualize ex-
amples in which inequality holds (e.g., C' could be the cone over an open
square, in which case r =4 > 3 = dim V). We will now prove that equality
holds if and only if the cone C is simplicial, by which we mean that for some
basis eq,...,e, of V, C consists of the linear combinations Z?:l A;e; with all
A; > 0. [In other words, C' is the interior of the cone over the simplex with
vertices eq, ..., ep.]
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Proposition 1.36. Assume that H is essential. Then the following conditions
on the chamber C are equivalent:

(i) C is a simplicial cone.

(ii) C has exactly n panels, i.e., r = n.

(iii) f1,..., fr are linearly independent.

(iv) f1,..., fr form a basis for the dual space V* of V.

Proof. As we noted above, the assumption that H is essential implies that
Mi_, Hi =0, i.e., that the equations f; =0, ..., f, = 0 have only the trivial
solution. The equivalence of (ii), (iii), and (iv) follows easily from this by
elementary linear algebra.

Suppose now that (ii)—(iv) hold, and let (e;)1<i<n be the basis of V dual
to (fi). Then the description “f; > 0 for 1 < ¢ < n” of C implies that C
consists of the positive linear combinations of the e;, which proves (i).

Conversely, (i) implies that C is defined by z; > 0 for 1 < i < n, where z;
is the ith coordinate function with respect to some basis for V. We can use
this description of C' to determine its walls, which are easily seen to be the
coordinate hyperplanes x; = 0; this proves (ii)—(iv). O

1.4.5 A Condition for a Chamber to Be Simplicial

The result of this subsection will be used later to show that the chambers
associated to an essential finite reflection group are always simplicial cones.

We continue with the notation of the previous subsection. Assume further
that V' has an inner product (—, —). Then the linear function f; is given by
(e;,—) for a unique vector e; € V. Replacing f; by a scalar multiple, we
may assume |le;|| = 1; thus e; is one of the two unit vectors perpendicular
to H;. Whenever there is a fixed chamber C under discussion, as there is at
the moment, then we can remove this ambiguity by requiring that e; point
toward the side of H; containing C'. This is equivalent to requiring, as above,
that f; > 0on C.

In summary, then, we are now assuming that the chamber C' is defined
by (e;,—) > 0 for 1 < i < m, where the e; are unit vectors, and that the
first r of these inequalities in fact suffice to define C'. Moreover, no smaller set
of linear inequalities defines C'. We repeat, for emphasis, that the collection
of vectors (e;)1<i<, is completely determined by C, up to reindexing. The
following proposition gives a sufficient condition for C' to be simplicial in
terms of the matrix of inner products (e;,e;) (1 < 4,5 < r), often called the
Gram matriz of C.

Proposition 1.37. Assume that H is essential. If (e;,e;) <0 for each i # j
(i,j <r), i.e., if the angle between e; and e; is not acute, then C is a simplicial
cone.



1.4 Cell Decomposition 25

Proof. According to Proposition 1.36, we must show that eq,...,e, are lin-
early independent. If not, we claim that there is a nontrivial linear relation
among them with nonnegative coefficients. For let >.._, A\;e; = 0 be an arbi-
trary nontrivial linear relation. If the nonzero \; all have the same sign, the
claim follows at once. Otherwise, we can rewrite the relation in the form

Zujej = Z HEek

jeJ kEK

with J and K disjoint nonempty subsets of {1,...,7} and all coefficients
positive. Then the inner product of the left-hand side of this equation with
the right-hand side is < 0. But this is the inner product of a vector with itself,
so that vector must be 0. Thus both sides of the equation are 0, and the claim
is proved.

Note that what we have done so far applies to any set of vectors with pair-
wise nonpositive inner products. But now let’s add the additional information
that the inequalities (e;,—) > 0 (¢ < r) define the (nonempty) chamber C.
This is clearly inconsistent with the existence of a nontrivial nonnegative lin-
ear relation among the e;, so we have reached a contradiction. Thus ey, ..., e,
are indeed linearly independent. a

1.4.6 Semigroup Structure

We return now to the general setup. Thus H = {H;},.; is not necessarily
essential, and V' is not assumed to be equipped with an inner product. We
saw in Section 1.4.2 that the set X' := X(H) of cells is a poset under the face
relation. What is less obvious, and perhaps surprising, is that there is a natural
way to multiply cells, so that Y becomes a semigroup. This product was
introduced by Bland in the early 1970s in connection with linear programming,
and it eventually led to one approach to the theory of oriented matroids;
see [37]. Tits [247] discovered the product independently (in the setting of
Coxeter complexes and buildings), although he phrased his version of the
theory in terms of “projection operators” rather than products.

We proceed now to the definition of the product. Given two cells A, B € X,
choose z € A and y € B, and consider a typical point p; := (1 — t)z + ty on
the line segment [x,y] (0 < ¢t < 1). For each i € I and all sufficiently small
t > 0, the sign of f;(p:) is the same as the sign of f;(x) unless f;(x) = 0, in
which case the sign of f;(p;) is the same as the sign of f;(y). Hence there is a
cell C' that contains p; for all sufficiently small £ > 0, and its sign sequence is
given by 0;(C) = 0;(A) unless 0;(A) = 0, in which case ¢;(C) = 0;(B). Note
that the sign sequence of C', and hence C itself, depends only on A and B,
not on the choice of x € A and y € B. We will call C the product of A and B:

Definition 1.38. Given two cells A, B € X, their product is the cell AB with
sign sequence
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oi(B) if 0i(A) = 0. (1.4)

The cell AB is characterized by the property that if we choose z € A and
y € B, then (1 — t)z + ty is in AB for all sufficiently small ¢ > 0.

See Figure 1.5 for a simple example, where A and B are half-lines and
AB turns out to be a chamber. For a second example, let A’ be the half-line
opposite A in the same figure; then AA” = A. One can easily check from (1.4)

B

Fig. 1.5. The product of two half-lines.

that the associative law holds:
A(BC) = (AB)C (1.5)

for all A, B,C € Y. In fact, the triple product, with either way of associating,
can be characterized by the property that o;(ABC) is 0;(A) unless 0;(A4) = 0,
in which case it is 0;(B) unless 0;(B) = 0, in which case it is 0;(C). So ¥
is indeed a semigroup. It has an identity, consisting of the cell [,., H; with
sign sequence (0,0,...,0).

Following Tits [247], we will often call AB the projection of B on A and
write

AB = proj, B .

This may serve as a reminder of the geometric meaning of the product. We
will see, however, that the product notation is quite useful, especially to facil-
itate application of the associative law. Note that the associative law, in the
language of projections, takes the complicated form

prOjA(prOjB O) = projprojA B C. (16)

Equation (1.6) appears (in a slightly different context from ours) in Tits’s
appendix [249] to Solomon’s paper [221] on the descent algebra, and the ob-
servation that (1.6) is actually an associative law can be used to give a much
simpler treatment; see [55].



1.4 Cell Decomposition 27

The geometry of projections is especially clear when the second factor is
a chamber. In order to state the result, we introduce a metric on the set
C := C(H) of chambers. We will temporarily denote this metric by ds (—, —);
later, after showing that dj; coincides with another naturally defined metric,
we will drop the subscript H.

Definition 1.39. The distance dy(C, D) between two chambers C, D is the
number of hyperplanes in H separating C' and D. Equivalently, dy(C, D) is
the number of positions at which the sign sequences of C and D differ.

The following result justifies the term “projection.”

Proposition 1.40. Given a cell A and a chamber C, the product AC (or the
projection of C on A) is a chamber having A as a face; among the chambers
having A as a face, it is the unique one at minimal distance from C.

Proof. To minimize the distance to C' of a chamber D > A, we must maximize
the number of indices i such that o;(D) = 0;(C). We have no choice about
0;(D) whenever o;(A) # 0, so the best we can do is make o;(D) = 0;(C)
whenever ¢;(A) = 0. This is precisely what the definition of AC in (1.4)
achieves. O

Finally, since X' is now both a poset and a semigroup, it is natural to ask
how these structures interact. We record a few simple results in the following
proposition, whose proof is routine and is left to the reader.

Proposition 1.41. Let A and B be arbitrary cells.

(1) A < AB, with equality if and only if supp B < supp A.

(2) A< B if and only if AB = B.

(3) supp A = supp B if and only if AB = A and BA = B.

(4) AB and BA have the same support, which is the intersection of the hy-
perplanes in 'H containing both A and B. O

Exercises

1.42. Prove the following more precise version of Proposition 1.40: For any
chamber D > A,

dy(C, D) = dy(C, AC) + dp(AC, D) . (1.7)

In the language of Dress—Scharlau [97], this says that the set C> 4 of chambers
D > A is a gated subset of the metric space of chambers. Here AC is the
“gate” through which one enters C> 4 to get from C' to an arbitrary chamber
D > A. See Figure 1.6 for a schematic illustration.

1.43. We say that cells A, B, ... are joinable if they have an upper bound
in the poset Y. Show that this holds if and only if they commute with one
another in the semigroup ', in which case their product is their least upper
bound.
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C>a

AC C
D

Fig. 1.6. The gate property.

1.44. If A and B have the same support, show that left multiplication by A
gives a bijection X>p — X4, with inverse given by multiplication by B.
This holds, for example, if A and B are opposite, i.e., A = —B.

1.45. Given A € X, show that the poset X'> 4 is isomorphic to the set of cells
of a hyperplane arrangement.

1.4.7 Example: The Braid Arrangement

Let H be the arrangement in R™ consisting of the (g) hyperplanes x; = x;
(i # 7). This has already occurred implicitly in the discussion of Example 1.10.
This arrangement, or its essential version in the (n — 1)-dimensional subspace
r1 + -+ x, = 0, is called the braid arrangement for reasons that are ex-
plained in [182]. It is also called, for more transparent reasons, the reflection
arrangement of type A,_1. A chamber with respect to H is a nonempty set
defined by inequalities z; —z; > 0 or z; —z; < 0 (i < j), i.e., it is a set defined
by specifying an ordering of the coordinates. Thus there are n! chambers, one
for each possible ordering. A typical chamber is given by

Tr(1) > Tr(2) > > Tr(n)

where 7 is a permutation of {1,2,...,n}. Figure 1.7 shows the correspondence
between chambers and permutations when n = 4. Here a permutation 7 is
represented by its list of values w(1)7(2) - - - m(n). (Recall that this is a rank-3
example, and that cells can be represented by their intersections with the unit
sphere; see Figure 1.3.)

Faces are gotten by changing zero or more inequalities to equalities. They
correspond to compositions B = (B, Ba, ..., By) of the set {1,2,...,n}, also
called ordered partitions. Here the blocks B; form a set partition in the usual
sense, and their order matters. The set composition B encodes the ordering of
the coordinates and which coordinates are equal to one another. For example,
the common face between the chambers 1234 and 1324 in Figure 1.7 is given
by

Ty > Tg =3 > T4,
and it corresponds to the set composition ({1},{2,3},{4}). Notice that the

chambers can be identified with the set compositions in which all blocks are
singletons.
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Fig. 1.7. Chambers correspond to permutations.

One can verify from equation (1.4) the following interpretation of the
product in terms of set compositions: Take (nonempty) intersections of
the blocks in lexicographic order; more precisely, if B = (By,...,B;) and
C=(Cy,...,Cp), then

BC=(BiNCy,....,.B1NCh,....,.BINCy,...,BiNCy)",

where the hat means “delete empty intersections.” More briefly, BC' is ob-
tained by using C to refine B.

This product, at least when the second factor is a chamber, has an inter-
esting interpretation in terms of card shuffling. See [55] and further references
cited there.

Remark 1.46. Although chambers correspond to permutations, their prod-
uct in the semigroup X' of cells has nothing to do with the usual product of
permutations. In fact, the product of two chambers is always equal to the first
factor.

1.4.8 Formal Properties of the Poset of Cells

Recall from Section 1.4.2 that the poset X := X(H) of (open) cells is iso-
morphic to the poset of closed cells, where the latter is ordered by inclusion.
(See Proposition 1.23 and the paragraph preceding it.) Recall, also, that any
intersection of closed cells is a closed cell (Corollary 1.26); consequently:

Proposition 1.47. Any two elements of X have a greatest lower bound. O

We will denote by A N B the greatest lower bound of two open cells A
and B. It is, of course, not the set-theoretic intersection of A and B, this
intersection being empty unless A = B; it is, rather, the open cell whose
closure is the intersection of A and B.
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Proposition 1.48. Any cell A € X is a face of a chamber. If A is a panel,
then it is a face of exactly two chambers.

Proof. Choose an arbitrary chamber C. [Such a C certainly exists: V' is not
the union of finitely many hyperplanes.] Then the projection AC defined in
Section 1.4.6 is a chamber having A as a face. If A is a panel with support H;,
then the sign sequence of a chamber D > A is determined except for o;(D),
which is either + or —. The two possibilities are realized by AC' and AC’,
where C and C’ are arbitrary chambers on opposite sides of H;. a

Corollary 1.49. Every H € 'H is a wall of a chamber.

Proof. H cannot be the union of its intersections with the other hyperplanes,
so there is at least one panel A with support H. Hence H is a wall of each of
the chambers C' > A. a

1.4.9 The Chamber Graph

Definition 1.50. Two chambers C' and C’ are adjacent if they are distinct
and have a common panel A.

Note that C' and C’ are then the two chambers having A as a face, and their
sign sequences differ in exactly one position. Thus the hyperplane H := supp A
is the unique element of H separating C from C’; in particular, dy (C,C") = 1,
where dy¢ is our metric on the set C := C(H) of chambers (Definition 1.39).
Moreover, A = C N C’. [One can prove this last assertion by a dimension
argument, or by looking at sign sequences, or simply by checking the definition
of C' N C’ above.] We will often say, in this situation, that “C' and C’ are
adjacent along the wall H.”

Example 1.51. If H is the braid arrangement (Section 1.4.7), then chambers
are labeled by permutations, viewed as lists of numbers. Two chambers are
adjacent if and only if the lists differ by the interchange of two consecutive
elements. See Figure 1.7.

Definition 1.52. The chamber graph associated with H is the graph whose
vertex set is the set C of chambers, with an edge joining two chambers C, C”
if and only if they are adjacent.

We can visualize the chamber graph by putting a dot in each chamber and
an edge cutting across each panel, as in Figure 1.8. We will sometimes draw
the schematic diagram

c c’ (1.8)

\
\
H
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Fig. 1.8. The chamber graph is a hexagon.

to indicate that C' and C’ are adjacent along H. The horizontal line is in-
tended to suggest an edge in the chamber graph, and the dashed vertical line
represents the wall that is crossed in going from C to C”.

There is a canonical metric on the vertices of any graph, where the dis-
tance between two vertices is the minimal length of a path joining them. The
usual convention is that the distance is oo if the two vertices are in different
connected components. But we will see below that the chamber graph is in
fact connected and that moreover, the graph metric on the set of chambers
coincides with the metric dy; of Definition 1.39. Before proceeding to this, we
introduce some terminology that we will be using throughout the book.

Definition 1.53. A path in the chamber graph is called a gallery. Thus a
gallery is a sequence of chambers I' = (Cy, C4, ..., ;) such that consecutive
chambers C;_1 and C; (i = 1,...,1) are adjacent. The integer [ is called the
length of I'. We will write

I Co, ey Cl

and say that I is a gallery from Cy to C), or that I' connects Cy and Cj.
The minimal length [ of a gallery connecting two chambers C, D is called the
gallery distance between C' and D and is denoted d(C, D). Finally, a gallery
C = Cy,...,C; = D of minimal length | = d(C, D) is called a minimal gallery
from C' to D. This is the same as what is commonly called a geodesic in the
chamber graph.

Once we have proven that d = dy, we will no longer need the notation dj,
nor will we need to refer to the distance as “gallery distance,” though we may
still do so occasionally for emphasis.

We sometimes represent a gallery schematically by means of a diagram

I': Cy Ch Co—- - —Cp

which may be further decorated with hyperplanes as in the diagram (1.8).
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Warning. In some of the literature, including the precursor [53] of the present
book, galleries are defined more generally to be sequences as above in which
consecutive chambers are either equal or adjacent. Such sequences do come
up naturally, as we will see, and we will call them pregalleries. A pregallery
can be converted to a gallery by deleting repeated chambers.

We noted above that the metric dy; of Definition 1.39 has the property
that dy(C,C") =1 if C and C" are adjacent, i.e., if they are connected by an
edge in the chamber graph. This motivates the following:

Proposition 1.54. The chamber graph is connected, and the gallery dis-
tance d(C, D) is equal to dp(C, D) for any two chambers C, D.

The crux of the proof is the following result:

Lemma 1.55. For any two chambers C # D, there is a chamber C' adjacent
to C such that dy(C', D) = dn(C, D) — 1.

Proof. Since C' is defined by its set of walls (Proposition 1.32), there must
be a wall of C' that separates C' from D. [Otherwise, we would have D C C,
contradicting the fact that distinct chambers are disjoint.] Let A be the cor-
responding panel of C, and let C’ be the projection AD (Section 1.4.6). Then
(" is adjacent to C, and dy(C’, D) = dy(C, D) — 1. O

Proof of the proposition. Given two chambers C, D, we may apply the lemma
finitely many times to obtain a gallery of length dy(C, D) from C to D. In
particular, the chamber graph is connected and d < d3. To prove the opposite
inequality, consider a gallery

C=0CyC,....,Ch =D

of minimal length | = d(C, D). Then dy(C;—1,C;) =1 fori=1,...,1, whence
dn(C, D) <. O

Given a minimal gallery C = Cy,...,C; = D, let Hy,...,H; € H be the
hyperplanes such that C;_; and C; are adjacent along H;. [Warning: This
notation has nothing to do with our original indexing of the elements of H as
{H;};c;; we will have no further need for that indexing.] We will refer to the
H; as the “walls crossed” by the gallery. Since exactly one component of the
sign sequence changes as we move from one chamber to the next, and since
exactly | = d(C, D) signs must change altogether, it is clear that Hy,..., H;
are distinct and are precisely the elements of H that separate C from D.
Conversely, suppose we have a gallery from C to D that does not cross any
wall more than once. If k is the length of the gallery, then exactly k signs
change, so k = [ and the gallery is minimal. This proves the following:

Proposition 1.56. A gallery from C to D is minimal if and only if it does
not cross any wall more than once. In this case the walls that it crosses are
precisely those that separate C from D. g
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Since the set C = C(H) of chambers is a metric space, it has a well-defined
diameter, which we will also refer to as the diameter of X; by definition, it
is the maximum distance d(C, D) between two chambers C, D. The following
result is immediate from the interpretation of the metric on C as dy:

Proposition 1.57. The diameter of C is m := |H|. For any chamber C,
there is a unique chamber D with d(C, D) = m, namely, the opposite chamber
D=-C. O

Observe that for any chambers C' and D,
d(C,D)+d(D,-C)=m. (1.9)

Indeed, every hyperplane in H separates D from either C' or —C', but not
both. Thus if we concatenate a minimal gallery from C to D with a minimal
gallery from D to —C', we get a minimal gallery from C' to —C. Consequently:

Corollary 1.58. For any chambers C, D, there is a minimal gallery from C
to —C passing through D. O

We have confined ourselves so far to distances and galleries between cham-
bers. But it is also possible to consider distances and galleries involving cells
other than chambers. The basic facts about these are easily deduced from the
chamber case via the theory of projections (Section 1.4.6); see Exercises 1.61
and 1.62 below.

Exercises

1.59. Let C be a chamber.

(a) If A is a cell that is not a chamber, show that AC' is not opposite to C.
(b) Conversely, if D is any chamber not opposite C, then D = AC for some
panel A of D.

1.60. Arguing as in the proof of Proposition 1.54, prove the following criterion
for recognizing the distance function on a graph. Let G be a graph with vertex
set V, and let 6: VxV — Z, be a function, where Z_ is the set of nonnegative
integers. Call two vertices incident if they are connected by an edge. Assume:

(1) 6(v,v) = 0 for all vertices v.
(2) If v and v’ are incident, then [0(v,w) — §(v',w)| < 1 for all vertices w.

(3) Given vertices v # w, there is a vertex v’ incident to v such that 6(v', w) <
0(v, w).

Then G is connected, and J is the graph metric.
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1.61. Given A, C € ¥ with C' a chamber, consider galleries
Cy,...,C; =C

with A < Cj. Such a gallery will be said to connect A to C. Show that a
gallery from A to C' of minimal length must start with Cy = AC'. Deduce that
the minimal length d(A, C) of such a gallery is |S(A,C)|, where S(4,C) is
the set of hyperplanes in H that strictly separate A from C. [A hyperplane
is said to strictly separate two subsets if they are contained in opposite open
half-spaces.]

1.62. More generally, given any two cells A, B € Y| consider galleries I" of
the form
Cy,...,C;

with A < Cy and B < C). In other words, I" is a path in the chamber graph
starting in C>4 and ending in C>p. Show that the minimal length d(A, B)
of such a gallery is |S(A, B)|, where S(A, B) has the same meaning as in the
previous exercise. More concisely,

d(C>a,C>p) = [S(A, B)],

where the left side denotes the usual distance between subsets of a metric
space. Moreover, the chambers Cy that can start a minimal gallery are pre-
cisely those having AB as a face.

A glance at Dress—Scharlau [97] is illuminating in connection with the
previous exercise.

1.63. Generalize Corollary 1.58 as follows: For any cell A and chamber D,
there is a minimal gallery from A to —A passing through D.

1.64. Proposition 1.57 can be viewed as giving a characterization of the cham-
ber —C opposite a given chamber C' in terms of the metric on C. In this exercise
we extend that characterization to arbitrary cells.

(a) Fix a cell A € ¥, and consider the maximum value of d(A, B), as B varies
over all cells. Show that d(A, B) achieves this maximum value if and only
if B> —A.

(b) Deduce that for any B € X, we have B = —A if and only if dim B < dim A
and d(A, B) = max{d(A,B’) | B' € X'}.

1.65. Let D be a nonempty set of chambers. Show that the following condi-
tions are equivalent:

(i) For any D, D' € D, every minimal gallery from D to D’ is contained in D.
(ii) D is the set of chambers in an intersection of half-spaces bounded by
hyperplanes in H.
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We say that D is convez if the equivalent conditions (i) and (ii) are satisfied.

1.66. Given two chambers C, D, show that their convex hull (the smallest
convex set of chambers containing both of them) consists of the chambers F
such that d(C,D) = d(C, E) + d(E, D). In other words, it consists of the
chambers that can occur in a minimal gallery from C to D. In particular,
the convex hull of any two opposite chambers C, —C' is the entire set C of
chambers.

1.67. For any A € X, show that the set C> 4 of chambers having A as a face
is convex.

1.68. Let X' C X be a nonempty set of cells closed under passage to faces.
Let [X'] be the corresponding subset of V, i.e., |[X'| := (J 5, A. Prove that
the following three conditions are equivalent:

(i) X7 is a subsemigroup of X.
(if) X’ is the set of cells in an intersection of closed half-spaces bounded by
hyperplanes in H.
(iii) | 27| is a convex subset of V.

If X contains at least one chamber, show that (i)—(iii) are equivalent to:

(iv) The maximal elements of X’ are chambers, and the set of chambers in X’
is convex.

(v) Given A,C € X’ with C' a chamber, X’ contains every minimal gallery
from A to C.

1.5 The Simplicial Complex of a Reflection Group

We return, finally, to the setup at the beginning of the chapter, where V'
is assumed to have an inner product, W is a finite reflection group acting
on V, and H is a set of hyperplanes such that the reflections sy (H € H)
generate W. We assume further that H is W-invariant. Such an H certainly
exists. For example, we can take H to consist of all hyperplanes H with
sy € W; the W-invariance of this set follows from the easily verified identity
swr = wsgw L. Or if W is defined via a generalized root system &, then we
can take H = {aL}aeqY We will see (Corollary 1.72 below) that there is a
unique H, so the two choices just described actually coincide; but this is not
obvious a priori.

Throughout this section we denote by X, or X(W,V), the set X (H) of
cells in V' with respect to H that we studied in Section 1.4.
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1.5.1 The Action of W on ¥(W,V)

Since X' is defined in terms of H and the linear structure on V, it is clear
that W permutes the cells and preserves all of the structure that we intro-
duced in Section 1.4: the face relation, products, adjacency,. ... In particular,
W acts on X as a group of poset automorphisms and a group of semigroup
automorphisms, and W acts on the chamber graph as a group of graph auto-
morphisms.

Let C be a fixed but arbitrary chamber, called the fundamental chamber,
and let S be the set of reflections with respect to the walls of C'. The elements
of S are called the fundamental reflections or simple reflections. For s € S let
Hj be the hyperplane fixed by s, and let A, be the panel of C' with support H.
Then we have A; = sA; < sC, so C and sC are the two chambers having
As as a face (Proposition 1.48). Thus the chambers adjacent to C' are the
chambers sC for s € S. Using the W-action, we deduce that for any w € W,
the chambers adjacent to wC' are the chambers wsC for s € S. Note that wC'
and wsC' are adjacent along the wall wHg, which is the fixed hyperplane of
the reflection wsw~!. Schematically:

|
C——sC M. WO wsC (1.10)
| |
H, wH,

It follows that galleries starting at C' are in 1-1 correspondence with words in
the alphabet S; the gallery

C 510 515207"'78182”'.550 (1.11)

corresponds to the word sys5 - - 5.

The reader may find it helpful to trace out some galleries for the reflection
group of type As pictured in Figure 1.9. Here W is the dihedral group of
order 6, generated by two reflections s, t whose product is a rotation of order 3.
In the figure, wq is the element sts = tst of W.

We can now prove the main result of this section, after which we will say
more about galleries.

Theorem 1.69.

(1) The set S of fundamental reflections generates W.
(2) The action of W is simply transitive on the set C of chambers. Thus
there is a 1-1 correspondence between W and C given by w < wC, where

C is the fundamental chamber. In particular, the number of chambers
is |W| := the order of W.

Proof. The proof will proceed in several steps.
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tsC tC H,

woC C

stC sC

Fig. 1.9. The chambers for W = <s,t (2 =12 = (st)3 =1 >

(a) We first show that the subgroup W’ := (S) generated by S acts transitively
on C. Given D € C we can choose a gallery from C to D since the chamber
graph is connected (Proposition 1.54). This gallery has the form (1.11), so
D = wC with w := s189---5, € W'.

(b) Next we prove assertion (1) of the theorem, which says that W = W'. It
suffices to show that W’ contains the generators sy of W (H € H). Given
H € H, take a chamber D having H as a wall (Corollary 1.49). Then D =
wC for some w € W' by (a), so H = wH, for some wall H, of C, and
sg =wsw e W,

(¢) To complete the proof, we must show that wC # C for w # 1 in W. We
will prove that in fact,

d(C,wC) = I(w) (1.12)

where the right-hand side is the minimal length of an S-word representing w,
i.e., the smallest [ > 0 such that

W= 81898 (1.13)

with s; € S. Thus we must show that the gallery from C to wC' corresponding
to (1.13) as in (1.11) is minimal if [ = I(w). Write the gallery as

U/()C

| | | |
‘ wlC ‘ ’LUQC ‘ cee ‘ ’LU[C
| | | |
| | | |
woHy w1 Hy woeHsz -+ w1 H

where w; := s1---s; and H; := Hg, (see (1.10), and note that w; = w;_1s;
for i > 1). Here wg := 1. If the gallery is not minimal, then two of the walls
indicated above must coincide (Proposition 1.56). Thus w;_1H; = w;_1 H; for
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some ,j with 1 <14 < j <. Passing to the associated reflections, we obtain

—1 —1
Wi—15;W; 1 = wj,lsjwj_l, or

1

-1 o
Wiw; 2y = Wiw; .

This can be rewritten as w;lle,l = w;le. Expanding both sides in terms
of s1,...,s;, we obtain, finally,

S’i"'Sj*l:S’LAJrl'.'Sj'
Hence

w:51"'Si—l(Si"'Sj—l)Sj"'Sl

81...Si71(8i+1...8j)8j...Sl

:51"'3i"'3j"'5l»

where the hats indicate deleted letters. This contradicts the minimality of [
and completes the proof. a

The miracle that occurred at the end of the proof leads to the following
surprising result:

Corollary 1.70. Let w = s183--- S, with s; € S. If there exists a shorter
expression for w as a product of elements of S, then there are indices i < j
such that

W=81-8; 85 Sm.
Proof. The hypothesis implies that d(C,wC') < m, so the gallery correspond-
ing to the given expression for w is not minimal. The conclusion now follows
from the proof of (¢) above. O

Remark 1.71. We will explore the algebraic consequences of this remarkable
property of (W,S), which we call the deletion condition, in a more general
setting in Chapter 2. And in Chapter 3, again in a more general setting, we
will give an alternative proof of it that seems less magical. See Lemma 3.70
and the paragraph following the proof of Lemma 3.71.

Next, here is the promised uniqueness of H.

Corollary 1.72. 'H necessarily consists of all hyperplanes H in V' such that
sgeW.

Proof. Suppose sy € W but H ¢ H. Then H Z |J /9 H', so H must meet
a chamber D. Since the element w := sy of W fixes H, it follows that wD
meets D and hence that wD = D, contradicting the theorem. a
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We close this subsection by summarizing what we now know about the
connection between S-words and galleries. This is most easily stated in the
language of Cayley graphs. We recall the definition of the latter in the form
that is most convenient for our purposes; there are slight variants of the defi-
nition in the literature.

Definition 1.73. Let G be a group and let .S be a symmetric set of generators
of G that does not contain the identity. Here “symmetric” means that S =
S~ Then the Cayley graph of (G, S) is the (undirected) graph whose vertex
set is G and whose edges are the unordered pairs {g, h} such that h = gs for
some s € S.

Note that the left-translation action of G on itself induces a left action of
G on the Cayley graph, since the edges are defined using right translation.
Note further that paths from 1 to g in the Cayley graph correspond to de-
compositions of g as a word in the elements of S. In particular, the distance
from 1 to g is the minimal length [ of an expression

g = 518278 (1.14)

of g as a product of generators.

Definition 1.74. We call the minimal length [ of a decomposition as in (1.14)
the length of g with respect to S, and we write

l=1s(g) -

We omit the subscript S if it is clear from the context. A minimal-length
decomposition (1.14) is called a reduced decomposition of g.

The following result is little more than a restatement of our earlier analysis
of galleries, combined with assertion (2) of Theorem 1.69.

Corollary 1.75. The chamber graph of X(W,V) is isomorphic, as a graph
with W-action, to the Cayley graph of (W,S). For any w € W, there is a
1-1 correspondence between galleries from C to wC' and decompositions of w
as an S-word. It associates to the decomposition w = sis9---s; the gallery
pictured in (1.11). Consequently, minimal galleries from C to wC' correspond
to reduced decompositions of w, and

d(C,wC) = I(w) . (1.15)

Proof. The bijection wC' < w sets up the isomorphism on the level of vertices.
The remaining details should be clear at this point and are left to the reader.
O

In working with Cayley graphs, one often labels the edge from g to gs by
the generator s. (Cayley [78] thought of the label as representing a color, and
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he called the graph a “colourgroup.”) Following this convention, we will often
write

wC —2— wsC (1.16)
and say that wC' is s-adjacent to wsC.

Warning. If C; and Cy are adjacent chambers, then the generator s that labels
the edge in the chamber graph joining them is not in general the reflection
that takes C to Cs. Indeed, the reflection taking wC' to wsC' is wsw ™!, which
is generally different from s.

Exercise 1.76. Deduce from equation (1.15) that I[(ws) = I(w) £ 1 for all
w € W and s € S. Deduce further that I(sw) = I(w) £ 1 for all w, s.

Note. The essential content of this is that one cannot have l(ws) = I(w).
One can prove this purely algebraically by a determinant argument. It is
not, however, a general property of length functions on groups. Consider, for
example, the direct product of two groups of order 2, with the three nontrivial
elements as generators.

1.5.2 The Longest Element of W

Recall from the general theory of hyperplane arrangements that —C' is the
unique chamber at maximal distance from the fundamental chamber C
(Proposition 1.57). This leads to the following results about W and its gen-
erating set S.

Proposition 1.77. Let (W, V) be a finite reflection group.

(1) W has a unique element wo of mazimal length. Its length is given by
l(wo) = |H|

(2) The element wq is characterized by the property that woC' = —C, where
C' is the fundamental chamber.

(3) l{wwg) = l(wp) — l(w) for allw e W.

(4) wg =1, and wo normalizes the set S of fundamental reflections.

Proof. By Theorem 1.69, there is a unique wg € W such that woC = —C.
Parts (1) and (2) now follow at once from Proposition 1.57 and equation (1.15).
(3) We have

l(wwg) = d(C, wweC)

= d(C,w(=C))
d(—C,w(C)
— [H| - d(C,wC)
= l(wo) - l(w) )

where the second-to-last equality follows from equation (1.9).
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(4) w3C = wo(—C) = —wo(C) = C, so Theorem 1.69 implies that wZ = 1.
Note next that —C' has the same walls as C, so S is the set of reflections with
respect to the walls of —C. On the other hand, wOSwal [= woSwp] is the set
of reflections with respect to the walls of —C' = woC. So wOSwo_l =S. a

It follows from (4) that conjugation by wy induces an involution of S (pos-
sibly trivial), which we denote by oo. We will give a geometric interpretation
of this involution in Proposition 1.130.

Exercise 1.78. Give an algebraic proof that wy normalizes S by using (3) to
calculate I(woswg) for s € S.

1.5.3 Examples

Example 1.79. Suppose that (W, V) is essential and of rank 2. One could
simply give a direct analysis of this situation, but it will be instructive to see
what Theorem 1.69 says about it. Let m := |H|. Then m > 2, and the m
lines in ‘H divide the plane V into 2m chambers, each of which is a sector
determined by two rays. The transitivity of W on the set of sectors implies
that they are all congruent, so each sector must have angle 27/2m = 7/m.
In view of assertion (1) of Theorem 1.69, W is generated by two reflections
in lines Ly and Lo that intersect at an angle of 7/m. In other words, W is
dihedral of order 2m and (W, V') looks exactly like Example 1.9.

Let us also record, for future reference, the following fact about this ex-
ample: Let L; and Lo be the walls of one of the chambers C, and let e;
(i = 1,2) be the unit normal to L; pointing to the side of L; containing C;
see Figure 1.10. Then the inner product of e; and ey is given by

™
(e1,e9) = _COSE .

[To understand the sign, note that the angle between e; and —es is 7/m.]

Example 1.80. This is a trivial generalization of the previous example, but
it will be useful to have it on record. Assume that (I¥,V') has rank 2 but
is not necessarily essential. In other words, if we write V"= V5 & V7 as in
Section 1.1, then dim V; = 2. By the previous example applied to (W, V}), we
have W = D, for some m > 2. Moreover, if (' is a chamber in V; with
walls L; and normals e; as above, then Vy x C7 is a chamber in V with walls
Vo @ L; and the same normals e;. In particular, it is still true that a chamber C'
has two walls and that the corresponding unit normals (pointing toward the
side containing C') satisfy

(e1,e9) = —cos% . (1.17)
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Lo

€1
Ly

o

Fig. 1.10. The canonical unit normals associated with a chamber.

Example 1.81. (Type A, _;) Let W be the symmetric group on n letters
acting on R™ as in Example 1.10. Thus a permutation 7 acts by m(v;) = v
for 1 < i < n, where vy,...,v, is the standard basis for R"™. [These basis
vectors were called e; in Example 1.10, but we now call them v; in order to
avoid confusion with the canonical unit vectors associated to a chamber.] In
terms of coordinates, the action is given by 7(z1,...,2,) = (y1,...,Yn) With

T =Yruy forl1<i<n. (1.18)

Indeed, we have m(3°1 | zv;) = Y0 @w(v;) = D7y Tivg(;), whence (1.18).

To analyze this example we can take H to be the braid arrangement dis-
cussed in Section 1.4.7; this set is clearly W-invariant, and the corresponding
reflections generate W. We already saw in Section 1.4.7 that the chambers are
in 1-1 correspondence with elements of W. The correspondence given there is
identical with the one predicted by Theorem 1.69, if we take the fundamental
chamber C to be given by

T > T > > Xy (1.19)
To see this, just observe that by (1.18), 7C' is defined by
Tr(1) > Tr(2) > > Tr(n) - (1.20)

The set of inequalities (1.19) is a minimal set of defining inequalities for C,
so the latter has n —1 walls, the ith of which is the hyperplane H; ;1 given by
2, =241 (1=1,...,n—1). [Note: n—1 is the “right” number of walls, since
this example has rank n — 1.] The reflection with respect to the ith wall is
the transposition s; := s; ;41 that interchanges ¢ and i + 1, so assertion (1) of
Theorem 1.69 reduces to the well-known fact that the n — 1 pairwise adjacent
transpositions generate the symmetric group.

We remark in passing that equation (1.15) also reduces to a well-known fact
about the symmetric group. Recall first that an inversion of a permutation



1.5 The Simplicial Complex of a Reflection Group 43

m € W is a pair (4,7) with 1 <4 < j <n and 7(i) > 7(j). Then the well-
known fact is that the length [g(7) is equal to the number of inversions of 7.
To derive this from (1.15), observe that by (1.20), a wall z; = z; with ¢ < j
separates C' from wC' if and only if ¢ occurs later than j in the list of numbers
7(1),...,m(n), i.e., if and only if 771(i) > 7=1(j). Thus (1.15) says that I(r)
is equal to the number of inversions of 7~ !; since I(7) = (7 1), this proves
our assertion.

Let’s compute, now, the canonical unit vectors ei,...,e,_1 associated
to C. If we let vq,...,v, be the standard basis vectors for V' := R" as above,
then the ith inequality defining C' can be written (v; — vir1,x) > 0, so the
unit vector e; perpendicular to the ith wall and pointing toward the side
containing C' is given by
Vi — Ui41

V2

In particular, we can calculate the inner product

€; =

1 for j =1,
(€i,ej) =< —1/2 for j=i+1,
0 for j >i+1.

Note that 1 = —cos(n/1), —1/2 = — cos(7/3), and 0 = — cos(7/2). Hence
the inner product calculation can be written in the more concise form

T
<eia€j> = —COos )
mij
where m;; is the order of s;s; (or, equivalently, 2m;; is the order of the dihedral

subgroup generated by s; and s;). This formula should not be surprising, in
view of (1.17).

Example 1.82. (Type C,,) Let W be the signed permutation group acting
on R™ as in Example 1.11. Then H consists of the hyperplanes z; — z; = 0
(1 #j), xzi+x; =0 (i # j), and z; = 0. To describe a chamber, one has to say
which coordinates are positive and which are negative, and one has to specify
an ordering of the absolute values of the coordinates. It follows that there are
2"n! chambers, each defined by n inequalities of the form

€1%7(1) > €2T 7 (2) > > €EnTr(n) >0
with ¢; € {1} and 7 € S,,. As fundamental chamber we can take
T >To > - >x, >0,

The interested reader can work out the fundamental reflections, the canonical
unit vectors, and so on, as in Example 1.81. The reader might further want to
work out the poset /semigroup of cells, as we did for type A,,_; in Section 1.4.7.
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Example 1.83. (Type D,,) Let W be the subgroup of the signed permutation
group consisting of elements that change an even number of signs (Example
1.13). Then H consists of the hyperplanes x; —x; = 0 and x; +; =0 (i # j).
To figure out what the chambers look like, consider two coordinates, say x
and xo. From the fact that x; is comparable to both x5 and —x2 on any given
chamber C, one can deduce that one of the coordinates is bigger than the
other in absolute value and that this coordinate has a constant sign. In other
words, we have an inequality of the form ex; > |za| or exy > |z1| on C, where
€ = +1. It follows that there are 2"~ 'n! chambers, each defined by inequalities
of the form

€1Tr(1) > €2Tr(2) > = > €n 1Tr(n—1) > |[Tr(n)] (1.21)

with ¢; € {£1} and © € S,. Note that the last inequality is equivalent to
two linear inequalities, €, 175 (1) > Tx(n) a0d €4 1Tr(n_1) > —Tx(n), SO We
have n linear inequalities in all.

As fundamental chamber we take

1’1>(£2>"‘>xn—1>|zn|a

with walls 1 = 29, 29 = 23, ..., Tp_1 = xp, and x,_1 = —x,. Further
analysis is left to the interested reader.

Example 1.84. This final example is intended to provide some geometric
intuition. Several statements will be made without proof, and the reader is
advised not to worry too much about this.

Let W be the reflection group of type Hs, i.e., the group of symmetries
of a regular dodecahedron in V := R3. It is convenient to restrict the action
of W to the unit sphere S? and to think of W as a group of isometries of
this sphere. As such, it is the group of symmetries of the regular tessellation
of the sphere obtained by radially projecting the faces of the dodecahedron
onto the sphere. Let P be one of the 12 spherical pentagons that occur in this
tessellation. It has interior angles 27/3, since there are 3 pentagons at each
vertex.

The circles of symmetry of this tessellation (corresponding to the planes of
symmetry of the dodecahedron) barycentrically subdivide P, thereby cutting
it into 10 spherical triangles. A typical such triangle T' has angles 7 /2, 7/3,
and 7/5. The angle 7/5 = 27/10 occurs at the center of P; the angle /3,
which is half of the interior angle 27/3 of P, occurs at a vertex of P; and
the angle 7/2 occurs at the midpoint of an edge of P, where the line from
the center of P perpendicularly bisects that edge. See Figure 1.11.* Finally, a
typical chamber C' in V is simply the cone over such a triangle T'. There are
12-10 = 120 such chambers, so |W| = 120. Thus the dodecahedral group W is

* Figure 1.11 first appeared in Klein—Fricke [145, p. 106] and is reprinted from a
digital image provided by the Cornell University Library’s Historic Monograph
Collection.
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Fig. 1.11. The dodecahedral tessellation, barycentrically subdivided.

a group of order 120 generated by 3 reflections. The calculation of the angles
of T above makes it easy to compute the orders of the pairwise products of
the generating reflections. One has, for a suitable numbering s1, so, s3 of these
reflections,

(8152)3 = (8283)5 = (8183)2 =1.

Exercises

1.85. Recall from the discussion near the end of Section 1.5.1 that we can
distinguish various types of adjacency. Spell out what that means in Examples
1.81, 1.82, and 1.83. (For the A,,_; case, see Example 1.51.)

1.86. Find wy and the induced involution of S in Examples 1.81, 1.82,
and 1.83, where wy is the element of maximal length (Section 1.5.2).

1.87. In Example 1.84, W is a familiar group of order 120. Which one is it?

1.5.4 The Chambers Are Simplicial

Let (W,V) be a finite reflection group, and let the notation be as in Sec-
tion 1.5.1. Thus we have a fundamental chamber C' with walls Hs (s € 5).
Let es be the unit normal to H pointing to the side of H; containing C. The
Gram matriz of C is the matrix of inner products (e, e;), whose rows and
columns are indexed by S (see Section 1.4.5).

The reader who has worked through the examples in Section 1.5.3 will not
be surprised by the following computation of the Gram matrix:

Theorem 1.88. With the notation above, we have

(es,e1) = —cos (1.22)

m(s,t)
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for s,t € S, where m(s,t) is the order of st. In particular, {es,e;) < 0 for
s # t. Consequently, C is a simplicial cone if (W, V) is essential.

The proof will make use of the following lemma:

Lemma 1.89. Given s # t in S, let W' be the group generated by s and t.
Then W' is a rank-2 reflection group, and C' is contained in a W'-chamber C’
having Hs and H; as its walls.

Proof. We have VW' = H, N H; = (Res ® Re;) L, so (W', V) has rank 2. Let
H' C 'H be the set of hyperplanes of the form w’Hg or w’Hy with w' € W'.
Then H’ is W/-invariant, and the reflections with respect to the elements
of H' are in W’ and generate it. Hence H’ is the set of W/-walls, i.e., the
set of hyperplanes that define the W’-cells. Since C' is convex and is disjoint
from all the elements of H’, it is contained in a W'-chamber C’. The rank
calculation shows that C’ has two walls. To see that these are H, and H;,
note that C’N H, O C'N H,, which has nonempty interior in H,, and similarly
for H;. So Hy and H; are walls of C’ by Proposition 1.33. O

Proof of the theorem. The last assertion follows from Proposition 1.37, so we
need only prove the first assertion. We may assume s # t. Let W’ and C’
be as in the lemma. Then (es, —) and {e;, —) are positive on C C C’; so e,
and e; are the canonical unit normals to the walls of C’. The inner product
formula (1.22) now follows from Example 1.80. O

One immediate consequence of the theorem is the following criterion for
reducibility:

Corollary 1.90. Assume that (W,V) is essential. Then (W, V') is reducible if
and only if there is a partition of S into (nonempty) subsets S',S” such that
m(s,t) =2 forallse€ S andt € S".

Proof. Suppose there is such a partition. Let W’ and W” be the subgroups
(S”) and (S”), and let V' (respectively V") be the subspace of V spanned
by the ey with s € S” (respectively s € S”). Then we have an orthogonal
decomposition V = V' @ V" and W can be identified with W’ x W’ acting
on this direct sum. Thus (W, V) is reducible. The converse is equally easy and
is left to the reader. O

The next corollary is more interesting. Recall from Section 1.5.2 that W
has a unique longest element wy and that wy normalizes S.

Corollary 1.91. Assume that (W,V') is essential and irreducible.

(1) wo is the only nontrivial element of W that normalizes S.
(2) The center of W is trivial unless W contains —1, where —1 denotes —idy .
In this case wg = —1 and the center is {£1} = {1, wop}.
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Proof. (1) We will give two proofs, one algebraic and one geometric. Both are
instructive.

Algebraic proof. Suppose w € W normalizes S, and set s’ := wsw™! for any
s € S. Since we, is a unit vector orthgonal to wHy; = Hy, we have weys = esey
with €, = £1. Let S; :={s€ S|e; =1} and S_ :={s€ S |e; =—1}. We
claim that m(s,t) = 2 for s € Sy and ¢t € S_. By irreducibility (and the
previous corollary), this will imply that either S; or S_ is all of S, i.e., that
€5 is independent of s.

To prove the claim, note that

(esr,er) = —(wes,wey) because s € Sy and t € S_
= —(es, €4) because w is orthogonal
= cos(m/m) by (1.22),

where m = m(s,t). On the other hand, (1.22) also implies
(esr,e4) = —cos(m/m’)

where m’ = m(s',t'). But m = m/ because the function s +— s’ is the restric-
tion of a group automorphism, so we must have cos(r/m) = 0, i.e., m(s,t) = 2.
This proves the claim.

We now know that e, is independent of s. So either wC = C or wC =
—C = wC. Since W is simply transitive on the chambers, we conclude that
w =1 or w = wy.

Geometric proof. Assume that w # 1 and that wSw™' = S, and consider the
chamber D := wC'. The reflections with respect to its walls are the reflections
in wSw~! = S, so D has the same walls H, as C. The crux of the proof is now
the following claim: Given s,t € S with m(s,t) > 2, either Hy and H; both
separate D from C or else neither of them separates D from C. The claim
implies, by irreducibility and the fact that D # C, that every Hg separates D
from C. Hence D is defined by (es,—) < 0 for all s € S, i.e., D = —-C = woC
and w = wy.

To prove the claim, we set W’ := (s,t) and apply Lemma 1.89 to get a
W'-chamber C’ O C such that Hy and H; are the walls of C’. We can also
apply the lemma with C replaced by D to get a W/-chamber D’ D D such that
H, and H; are the walls of D’. Now we know exactly what rank-2 reflection
groups look like, and since m(s,t) > 2, there are only two W’-chambers with
H, and H; as walls, namely, C’ and —C’. Hence D’ = +(C’, and the claim
follows at once.

(2) The center of W normalizes S, so if there is a nontrivial center then
wy is central and is the unique nontrivial element of the center. But if wq is
central, then wpe; = —eg for all s; hence wyg = —1. O
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Exercises

1.92. Calculate the integers m(s, t) for the reflection groups of type C,, and D,,
(Examples 1.82 and 1.83) and verify (1.22) by direct calculation.

1.93. Suppose (W, V) is essential but reducible. Show that the normalizer of S
is bigger than {1, wp}.

1.5.5 The Coxeter Matrix

We continue to assume that (W, V) is a finite reflection group with a funda-
mental chamber C' and corresponding set .S of fundamental reflections. We as-
sume further that (W, V') is essential. Then |S| = n := dim V' by Theorem 1.88
[since the simplicial cone C' has exactly n walls], and the vectors es (s € S)
form a basis for V. This fact, when combined with the calculation (1.22) of
the Gram matrix, has the following important consequence:

Corollary 1.94. Assume that (W, V') is essential. Then (W, V) is completely

determined, up to isomorphism, by the matriz M := (m(s,t))S tes -

Proof. Given M, we can recover (W,V) as follows: V can be identified
with RS, the vector space of “S-tuples” (14)seg, with standard basis (e,)ses -
We give R® the inner product defined by (1.22), and we can then identify W
with the group of linear automorphisms of R generated by the orthogonal
reflections with respect to the hyperplanes e ™. a

Definition 1.95. The matrix M = (m(s,t))s tcs is called the Cozeter matric
associated to W. More precisely, M is associated to W together with a choice
of fundamental chamber. It is an n X n matrix whose rows and columns are
indexed by the set S of fundamental reflections.

The short explanation of Corollary 1.94 is that the Coxeter matrix deter-
mines the Gram matrix and the Gram matrix determines (W, V). Note that
we have the following explicit formula for s in terms of the inner product, and
hence in terms of the Coxeter matrix:

s(z) =x — 2{es, x)es . (1.23)
This is simply formula (1.1) specialized to the case that « is a unit vector.

Remark 1.96. The Coxeter matrix has the following formal properties: It
is a symmetric matrix of integers m(s,t), with m(s,s) = 1 and m(s,t) > 2
for s # t. But not every such matrix can be the Coxeter matrix of a finite
reflection group. A further necessary (and, as we will see in Section 2.5.4,
sufficient) condition is that the matrix A := (— cos(m/m(s,1))) 1eg must be
positive definite. This fact, together with Corollary 1.94, is the basis for the
classification result stated in Section 1.3. Indeed, the proof of that result in
Bourbaki [44], Grove-Benson [124], and Humphreys [133] consists in analyzing
the possibilities for M, given that A is positive definite.

Exercise 1.97. What happens to M if we change the choice of C?
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1.5.6 The Coxeter Diagram

Instead of working directly with the Coxeter matrix M, one usually works
with a diagram called the Cozeter diagram, which encodes all the information
in M. The diagram has n vertices, one for each s € S, and the vertices
corresponding to distinct elements s,t are connected by an edge if and only
if m(s,t) > 3. If m(s,t) > 4, then there is more than one convention in the
literature as to how to indicate this in the diagram; the one we will follow is
simply to label the edge with the number m(s,t). In summary, a labeled edge
(with label necessarily at least 4) indicates the value of the corresponding
m(s,t); an unlabeled edge indicates that m(s,t) = 3; and the lack of an edge
joining s and ¢ indicates that m(s,t) = 2.

The Coxeter diagrams for all of the irreducible finite reflection groups are
shown in Table 1.1. Based on the examples we have given (and Exercise 1.92),
the reader should be able to check that the diagrams are correct for the cases
An, Cn, Dn, Gg, H37 and Ig(m)

Remarks 1.98. (a) Note that the diagrams that occur in this table are very
special. For example, the graphs are all trees; there is very little branching in
these trees; and the edge labels are rarely necessary (i.e., the numbers m(s,t)
are rarely bigger than 3). One does not need the full force of the classification
theorem in order to know these properties; in fact, these properties are among
the first few observations that occur in the proof of the classification theorem
given in the cited references.

(b) Readers who have studied Lie theory will be familiar with the Dynkin
diagram of a root system. The Dynkin diagram is similar to the Coxeter
diagram, but it contains slightly more information; in particular, it contains
enough information to distinguish the root system of type B, from that of
type C,, for n > 3, even though these root systems have the same Weyl group.

(¢) In the diagrams corresponding to root systems (all but the last three dia-
grams in Table 1.1), the only edge labels that occur are 4 and 6. According to
a common convention different from the one we have adopted, one omits these
labels and instead draws a double bond (two parallel edges) when m(s,t) = 4
and a triple bond (three parallel edges) when m(s,t) = 6.

Exercises

1.99. Compute the Coxeter diagrams for the reflection groups of type Do
and D3. Why aren’t these listed in the table?

1.100. Show that an essential finite reflection group (W,V) is irreducible if
and only if the graph underlying its Coxeter diagram is connected. Deduce,
in the reducible case, a canonical decomposition

(W,V)g(WlX~~~XWk,V1@"'@Vk)



50 1 Finite Reflection Groups

A, o—o— 6 i—0—0 (n > 1 vertices)
C RN SEDN (n > 2 vertices)
D, o o . —o—<: (n > 4 vertices)
EG O o
o
E7 O ©
o
Es O ©
Fy O 4 O
G 6
2 o—2o
Hs oo 9 4
Hy O 5 O
I(m) o o (m=5o0orm>7)

Table 1.1. Coxeter diagrams of the irreducible finite reflection groups.

into “irreducible components,” one for each connected component of the Cox-
eter diagram.

1.101. Let (W, V) be an essential irreducible finite reflection group. The pur-
pose of this exercise is to show that (W, V) is also irreducible in the sense
of representation theory, i.e., the only W-invariant subspaces of V are {0}
and V. Let V’ be a W-invariant subspace.

(a) For each s € S, show that either V' contains e, or V' is contained in the
hyperplane H, := e .
(b) If V/ contains e, for some s € S, show that V' contains e for all s € S.
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(c) Deduce from (a) and (b) that V' = {0} or V. Thus the action of W on V/
is irreducible in the sense of representation theory.

(d) Show that the only linear endomorphisms of V' that commute with all
elements of W are the scalar-multiplication operators. [This implies that
the action of W on V is absolutely irreducible.)

1.102. Use Exercise 1.101 to give a new proof of Corollary 1.91(2): The cen-
ter of an essential, irreducible finite reflection group W is trivial unless W
contains —1, in which case the center is {£1}.

1.5.7 Fundamental Domain and Stabilizers

When studying the action of a group on a set, one wants to know how many
orbits there are and what the stabilizers are at typical points of these orbits.
Both of these questions have extremely simple answers in the case of W acting
on V. We need one bit of terminology.

Definition 1.103. If a group G acts on a space X, then we call a subset
Y C X a strict fundamental domain if Y is closed and is a set of representa-
tives for the G-orbits in X.

Theorem 1.104. Let (W, V) be a finite reflection group, C a chamber, and
S the set of reflections with respect to the walls of C. Then C is a strict
fundamental domain for the action of W on V. Moreover, the stabilizer W,
of a point z € C is the subgroup (S;) generated by S, := {s € S| sx = z}. In
particular, W, fizes every point of A, where A is the cell containing x.

Proof. Since W is transitive on the chambers, it is clear that every point of V'
is W-equivalent to a point of C. Everything else in the theorem will follow
if we prove the following claim: For z,y € C and w € W, if wz = y then
x =y and w € (S,). We argue by induction on the length [ := I(w) of w with
respect to S.

If I = 0 there is nothing to prove, so assume [ > 0 and choose a reduced
decomposition w = s7 ---s;. Since the corresponding gallery from C' to wC'
is minimal (Corollary 1.75), we know that C' and wC' are separated by the
wall H; fixed by s;. We therefore have

wr=y€CNwC C H;.
So if we apply s1 to both sides of the equation wz = y, we obtain
wr=s1y=y,
where w’ := sjw = s - - - 5;. By the induction hypothesis, it follows that z =y

[whence s; € S;] and that w' € (S,). So w = syw’ is also in (S,), and the
proof is complete. a
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Corollary 1.105. For any cell A, the stabilizer W4 of A (as a set) fixres A
pointwise.

Proof. We may assume that A is a face of the fundamental chamber and hence
that A C C'. Then no two distinct points of A are W-equivalent, and the result
follows at once. O

Exercise 1.106. Let A and B be cells, and let AB be their product (Sec-
tion 1.4.6). Show that Wap = W4 N Wpg.

1.5.8 The Poset X' as a Simplicial Complex

The fact that every chamber is a simplicial cone in the essential case suggests
that the hyperplanes in H cut the unit sphere in V' into (spherical) simplices.
Thus it seems intuitively clear that the poset X' := X (W, V) of cells can be
identified with the poset of simplices of a simplicial complex that triangulates
a sphere of dimension rank(W, V) — 1. In this subsection we prove this state-
ment rigorously. Before proceeding, the reader might find it helpful to look
at the first few paragraphs of Appendix A, where we explain our conventions
regarding simplicial complexes. In particular, the statement of the following
proposition has to be understood in terms of Definition A.1.

Proposition 1.107. The poset X' is a simplicial complex.

Proof. We may assume that (W, V) is essential, since X' remains unchanged,
up to canonical isomorphism, if we pass to the essential part. According to
Definition A.1, we must check two conditions. Condition (a) is that any two
elements of Y have a greatest lower bound; this has already been proved in
Proposition 1.47. As to Condition (b), concerning the poset X< 4 of faces of
acell A € X, we know that A is a face of a chamber, so it suffices to consider
the case that A is a chamber. But it is a trivial matter to compute the poset
of faces of a simplicial cone, and this poset is indeed isomorphic to the set of
subsets of {1,...,n}. |

We gave this somewhat abstract proof of the proposition in order to intro-
duce the unorthodox terminology that we use regarding simplicial complexes;
this will be useful later. But it is easy to chase through the discussion in Sec-
tion A.1.1 in order to describe in more conventional terms how, in the essential
case, X' can be identified with an abstract simplicial complex (in which the
simplices are certain finite subsets of a set of “vertices”):

Every 1-dimensional cell A € X' is a ray R} v, where R% is the set of
positive reals and v is a unit vector; the unit vectors v that arise in this way
are the vertices of our simplicial complex. For each (¢ 4 1)-dimensional cell
A e X (¢ > —1), there is a g-simplex {vg,...,vq} in our complex, where
the v; are the unit vectors in the 1-dimensional faces of A. It should be clear
that we do indeed obtain a simplicial complex in this way and that X can
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be identified with the poset of simplices of this complex. Notice that we have
allowed ¢ = —1 above. The cell A is {0} in this case, and it corresponds to
the empty set of vertices. [Our convention, as explained in Section A.1.1, is
that the empty set is always included as a simplex of an abstract simplicial
complex.]

Proposition 1.108. The geometric realization |X| is canonically homeomor-
phic to a sphere of dimension rank(W, V) — 1.

Proof. Again we may assume that (W, V) is essential, in which case we will
exhibit a homeomorphism from |X| to the unit sphere in V. Recall from Sec-
tion A.1.1 that |¥| consists of certain convex combinations ), A,v, where v
ranges over the vertices of X', viewed as basis vectors of an abstract vector
space. Now the vertices vp,...,v, of any A € X can also be viewed as unit
vectors in V', and as such, they are linearly independent. Hence we have a map
| Y| — V ~ {0}, given by > A,v — > A,w. Composing this with radial pro-
jection, we obtain a continuous map ¢: |X| — S™"~1. Since ¢ takes |A| C |X|
bijectively to AN S™~1 C V, it is bijective and therefore a homeomorphism
(by compactness of | X|). O

In view of the results of this section, an essential finite reflection group of
rank n is also called a spherical reflection group of dimension n — 1.

Exercise 1.109. Suppose W is the group of symmetries of a regular solid X .
Make an intelligent guess as to how to describe X' directly in terms of X.

1.5.9 A Group-Theoretic Description of ¥

We started the chapter with a “concrete” group W, given to us as a group of
linear transformations (or, in more geometric language, as a group of isome-
tries of Euclidean space, or, even better, as a group of isometries of a sphere).
The geometry gave us, after we chose a fundamental chamber C, a set S of gen-
erators of WW. The geometry also gave us a simplicial complex X' := (W, V),
constructed by means of hyperplanes and half-spaces. We will prove below,
however, that if we forget the geometry and just view W as an abstract group
with a given set S of generators, then we can reconstruct X by pure group
theory. This observation will have far-reaching consequences. For simplicity,
we assume in this subsection that (W, V) is essential.

Consider first the subcomplex X< consisting of the faces of the funda-
mental chamber C. To every face A < C, we associate its stabilizer W 4. In
view of Theorem 1.104 and Corollary 1.105, W4 is also the stabilizer of any
point # € A, and it fixes A pointwise. The theorem also says that Wy is
generated by a subset of our given generating set S. Subgroups of this form
have a name:

Definition 1.110. A subgroup of W is called a standard parabolic subgroup,
or simply a standard subgroup, if it is generated by a subset of S. Any conjugate
of such a subgroup will be called parabolic, without the adjective “standard.”



54 1 Finite Reflection Groups

Thus we have a function ¢ from Y'<c to the set of standard subgroups
of W, and we will show that ¢ is a bijection. In fact, we can construct the
inverse 9 of ¢ by taking fixed-point sets: Let W’ be a standard subgroup of W,
generated by a set S’ C S; then the fixed-point set of W’ in C is obtained by
intersecting C' with the walls of C' corresponding to the reflections in S’. So
this fixed-point set is equal to A for some A < C, and we can set y(W') := A.
Using the stabilizer calculation in Section 1.5.7, one can easily check that
is inverse to ¢.

Note next that ¢ and its inverse v are order-reversing. For v, this is
immediate from the definition. In the case of ¢, the assertion follows from
the fact that W, fixes A pointwise and hence stabilizes every face of A. We
therefore have a poset isomorphism

Y<c = (standard subgroups)® (1.24)

where “op” indicates that we are using the opposite of the usual inclusion
order. We will also describe the poset on the right in (1.24) as the poset of
standard subgroups, ordered by reverse inclusion. Figure 1.12 illustrates this
isomorphism when n = 3 and S = {s,t,u}. Here C' is the cone over a triangle,
and we have drawn a slice T' of C' (or, equivalently, the intersection of C' with
the unit sphere). The figure shows the stabilizer of almost every face of T,
the one exception being the empty face, which is not visible in the picture.
The empty face corresponds to the cell A := {0}, which would appear in the
picture if we drew the whole chamber C' instead of just 7. It is the smallest
face of T', and its stabilizer is the largest standard subgroup of W, namely,
W itself. Similarly, the largest face is T itself, whose stabilizer is the smallest
standard subgroup {1} (generated by 0 C .59).

(s,t)
/N
/<8> P <t>\

(s,u) {u) (t, u)

Fig. 1.12. The standard parabolic subgroups as stabilizers.

Returning now to the general case, we can use the W-action to extend
our isomorphism to one from the whole poset X to the set of standard cosets
in W, i.e., the cosets wW’' of standard subgroups. Indeed, we can send a
typical element wA € X (w € W, A < C) to the coset wWy. It is a routine
matter to deduce the following result from what we did above for Y'<c:

Theorem 1.111. There is a poset isomorphism
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Y = (standard cosets)”

that is compatible with the W -action, where W acts on the cosets by left trans-
lation. O

We can express the theorem more briefly by saying that X' is WW-isomorphic
to the poset of standard cosets in W, ordered by reverse inclusion.

Exercise 1.112. Let W be the reflection group of type A,_; (symmetric
group on n letters), with the standard choice of fundamental chamber. Thus
S is the set {s1,...,s,—1} of basic transpositions, where s; interchanges ¢ and
i + 1. We stated without proof in the discussion of Example 1.10 that the
complex X' associated to W is the barycentric subdivision of the boundary of
an (n — 1)-simplex. (See also Exercise 1.109.) Prove this rigorously.

1.5.10 Roots and Half-Spaces

Finally, having reconstructed the complex X' := X (W, V) from the algebraic
data (W, S), we wish to do the same for some other geometric concepts: walls,
reflections, roots, and half-spaces. The set H of walls and the corresponding
set T of reflections are easy to describe algebraically:

Proposition 1.113. Let T be the set of reflections in W. Then T is the set of
conjugates of elements of S, and there is a bijection H — T given by H — sp.
This bijection is W -equivariant, where W acts on T' by conjugation.

Proof. The fact that T is the set of conjugates of elements of S was proved
in step (b) of the proof of Theorem 1.69, and the bijection with H follows
from Corollary 1.72. Finally, W-equivariance is simply the familiar formula
Swir = wsgw L, which we have already used several times. O

Turning next to roots, suppose that W is the reflection group Wy associ-
ated with a generalized root system &. Note, then, that the open half-spaces
determined by H are in 1-1 correspondence with roots: To a half-space U
bounded by H we associate the root o that is orthogonal to H and points
toward U. [Recall from Section 1.1 that our root systems are assumed to be
reduced, so there is only one such «.] Thus U is defined by (o, —) > 0.

Definition 1.114. We call the open half-space U and the corresponding root
a positive if U contains the fundamental chamber C', and we call them negative
otherwise. A positive root « is called simple if a is a wall of C.

(Thus the simple roots give, after normalization, the unit vectors es that we
discussed earlier.)

We wish to recover @, as a set with W-action, from (W, S). Now we have
already described H algebraically, and there is an obvious bijection @ «
H x {£1} where H x {+1} corresponds to the positive roots and H x {—1}
corresponds to the negative roots. To work out the W-action, we need to know
when an element w € W transforms a positive root to a negative root.
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Lemma 1.115. Let o be a positive root with corresponding hyperplane H :=
at. For any w € W, wa is a negative root if and only if H separates C
from w™1C.

Proof. Let U be the half-space corresponding to . Then

wa is negative <= wU is negative
<= wU does not contain C
<= U does not contain w~*C
<= H separates C' from w'C. g

Let’s specialize to the case that w is a fundamental reflection s € S. Then
the wall H, fixed by s is the only wall that separates C' from sC'. So the lemma
in this case says that sa is negative if and only if ot = H,. This gives the
following interpretation of ¢ as a set with W-action:

Proposition 1.116. There is a W -equivariant bijection ® «— Hx{x1}, where
the action of a generator s on H x {x1} is given by

(sH,e) if H+# Hg,

(H,e) =~ {(H, —o) ifH=H,.

a

Propositions 1.113 and 1.116 have a purely group-theoretic consequence,
whose significance will become clear in the next chapter:

Corollary 1.117. Let T be the set of conjugates of elements of S. Then there
is an action of W on T x {£1} such that a generator s € S acts by

(sts,e) if t # s,
(.0 = {(s, —€) ift=s.

O

Finally, we will describe algebraically the half-spaces corresponding to the
fundamental reflections. Here we identify a half-space with the set of chambers
it contains, and we use the bijection wC' < w of Theorem 1.69 to relate this
to a subset of W. Our task, then, is to describe the set of w € W such that
wC C Uy (s), where U, (s) is the positive half-space bounded by H.

Proposition 1.118. For all s € S and w € W, wC C U4 (s) if and only if
l(sw) > l(w).



1.5 The Simplicial Complex of a Reflection Group 57

Proof. We have

wC C Ut (s) < Hg does not separate C' from wC
— d(sC,wC) > d(C,wC)
— d(C,swC) > d(C,wC)
= Il(sw) > l(w),

where we have used the W-invariance of d(—,—) to write d(sC,wC) =
d(C, swC). O

Example 1.119. We illustrate the concepts in this section by applying them
to the case that W is the symmetric group on n letters acting on R™ as in
Examples 1.10 and 1.81. Recall that a permutation 7 acts on R™ by me; = e (),
where eq,...,e, is the standard basis for R".

(a) Walls and reflections. There is one wall H;; for each unordered pair i, j of
integers with 1 < 4,5 < n and i # j; it is the hyperplane given by z; = z;.
The corresponding reflection is the transposition s;; € W that interchanges ¢
and j.

(b) Roots and half-spaces. We can take our root system & to be the set of
vectors a; := e;—e;. Thus there is one root for each ordered pair of integers i, j
with 1 <4,5 <n and i # j; the corresponding half-space is given by x; > ;.
Recalling that the fundamental chamber C is defined by 1 > -+ > x,,, we see
that a; is a positive root if and only if ¢ < j. So the bijection & « H x {£1}
is given by ay; < (H;j,€), where e = +1 <= i < j.

Let’s take the analysis one step further and identify the roots with subsets
of W. Here if « is a root and U is the associated half-space (a, —) > 0, the
corresponding subset of W is {w € W | wC C U}. Thinking of elements of W
as permutations 7w, we claim that

;= {meW 770 <7 ()} - (1.25)

The condition 7~1(i) < 7~1(j) has a concrete interpretation if we represent
a permutation 7 by its list of values m(1)m(2)---7(n) as in Section 1.4.7.
Namely, it says that 7 occurs before j in the list. To prove the claim, we need
only recall that 7C' is the chamber given by w1y > -+ > @(,). Clearly this
chamber is contained in the half-space x; > x; if and only if 7 precedes j in
the list representing .

The reader might find it instructive to verify that the sets of permutations
corresponding to ay4 and ay; in Figure 1.7 do indeed form a pair of opposite
hemispheres.

(c) The action of W on roots. It is immediate from the definitions that way;; =
O (i)w(y) for any 7,7 and any permutation w € W. One can easily verify by
direct calculation that this is consistent with the correspondence in (1.25),
i.e., that left multiplication by w maps the set on the right side of (1.25) to

{reW |77 (w(i) < 7 (w(7))}.
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(d) The simple roots. Finally, we illustrate Proposition 1.118 in this example.
The fundamental reflections are the transpositions s; := s;;+1, where 1 <
i < n — 1. The corresponding root is e; — e;41, and the corresponding subset
of W, according to (b), is the set of permutations 7 such that 7=1(i) <
7 1(i 4 1). Recall now that the length of an element w € W is the number of
inversions (see Example 1.81). The interpretation of Proposition 1.118, then,
is the following assertion, which one can easily check directly: i precedes i+ 1
in the list (1) ---m(n) if and only if interchanging ¢ and ¢ + 1 increases the
number of inversions.

Exercises

1.120. Show that every positive root is a nonnegative linear combination of
simple roots.

1.121. Show that every root is W-equivalent to a simple root.

1.122. Write down the simple roots for the root systems of type A,,, B, C,,
and D,,, based on the fundamental chambers given in Section 1.5.3.

1.123. Given s € S, let a be the corresponding simple root. For any w € W,
show that way is a positive root if and only if I(ws) > I(w).

1.124. A restatement of Proposition 1.118, in view of Exercise 1.76, is that
wC ¢ Ui(s) if and only if I(sw) < l(w), ie., if and only w admits a re-
duced decomposition starting with s. Interpret this geometrically in terms of
galleries.

1.125. For any w € W, show that [(w) is the number of positive roots «
such that wa is negative. [Note that this proves, again, that the length of a
permutation is the number of inversions.] Deduce that the longest element
wo € W (Section 1.5.2) is characterized by the property that it takes every
positive root to a negative root.

1.126. With wg as in the previous exercise, show that the action of wg on the
simple roots a; (s € S) is given by

Wohs = —Qg(s) »

where o is the involution of S introduced at the end of Section 1.5.2.

1.6 Special Properties of X

We close this chapter by mentioning three properties of the simplicial complex
Y = X(W,V) associated to a finite reflection group:
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e Y is a flag complex (Section 1.6.1).
e Y is a colorable chamber complex (Section 1.6.2).
e Y is determined by its associated chamber system (Section 1.6.3).

The terminology is explained in Appendix A; see Sections A.1.2, A.1.3, and
Al4.

The importance of these properties will not become clear until later in
the book. The reader may wish to skip ahead to Chapter 2 and return to the
present section as needed.

1.6.1 X' Is a Flag Complex

In many of our examples of finite reflection groups, we have remarked that X
is a barycentric subdivision. And we note in Section A.1.2 that barycentric
subdivisions are always flag complexes. The following result is therefore not
surprising:

Proposition 1.127. The simplicial complex X associated to a finite reflection
group is a flag complez.

Proof. In view of the characterization of flag complexes given in Proposi-
tion A.7, it suffices to note that every set of pairwise joinable simplices is
joinable. This is in fact true in greater generality. Indeed, if X' is the poset
of cells associated to an arbitrary hyperplane arrangement, then every set of
pairwise joinable elements of X' is joinable. This follows from the criterion for
joinability given in Exercise 1.43. g

1.6.2 X' Is a Colorable Chamber Complex

It is immediate that the simplicial complex X' associated to a finite reflection
group is a chamber complex as defined in Section A.1.3. And, using barycentric
subdivisions as motivation again, we already know that X' is often colorable.
In fact, it is always colorable.

Proposition 1.128. The chamber complex X associated with a finite reflec-
tion group W is colorable.

Proof. We will use the criterion in terms of retractions stated at the end of
Section A.1.3. Choose a chamber C. Then we can define ¢: X' — Y<c by
letting ¢(A) be the unique face of C' that is W-equivalent to A (see Theo-
rem 1.104). Tt is easy to check that ¢ is a well-defined chamber map and a
retraction. O

It is clear from the proof that two simplices have the same type (or color)
if and only if they are in the same W-orbit. In particular:

Corollary 1.129. The action of W on X is type-preserving. g
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Recall from Section A.1.3 that the (essentially unique) type function on X
is completely determined once one assigns types to the vertices of a “funda-
mental” chamber C. There is a canonical choice in which the set of colors is
the set .S of fundamental reflections. Namely, for each vertex v of C, the panel
of C' not containing v is fixed by a unique reflection s, and we declare v to
have type s. More succinctly, the panel of C fixed by s has cotype s, i.e., it is
an s-panel. See Figure 1.13.

Fig. 1.13. A is the s-panel of C.

We can also describe the type function by means of the correspondence
between simplices and standard cosets (Theorem 1.111): The simplex corre-
sponding to a coset w(S") has cotype S’.

Figure 1.14 shows the canonical type function when W is the reflection
group of type Ay (see also Figure 1.9). Here X is combinatorially a hexagon.
Our definition implies that the white vertex of the fundamental chamber has
type s; hence all of the white vertices have type s. Similarly, all the black
vertices have type t.

Fig. 1.14. The canonical type function; o = s, ¢ = t.
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The reader might find it instructive to work out the types of the three
vertices of the fundamental chamber in Figure 1.12. For example, the vertex
with stabilizer (s,t) has type u.

The fact that the set S plays a dual role, being both a subset of W and a
set of types of vertices of X, is potentially confusing. In practice, however, it
turns out to be quite useful. As an illustration of the dual role, consider the
opposition involution of X = X (W, V'), which is by definition the simplicial
automorphism A — —A for A € ¥. We denote it by opy. Thinking of S as
the set of types of vertices, we get an induced type-change involution (opy; )
(possibly trivial) by Proposition A.14. On the other hand, thinking of S as
a subset of W, we have an involution og of S, given by conjugation by the
longest element wy (Section 1.5.2). These two involutions turn out to coincide:

Proposition 1.130. The type-change map (opsx )« is 0g.

Proof. Fix s € S and let A be the panel of C of cotype s, i.e., the panel
of C fixed by s. We have to show that the cotype of the panel —A of —C
is 0¢(s). In view of Corollary 1.129, the cotype of —A is the same as that of
wo(—A) = —wp(A). The latter is the panel of C fixed by wgswy = o¢(s), so
it does indeed have cotype op(s). O

Corollary 1.131. If (W, V) is essential, then the following conditions are
equivalent:

(i) The involution oq is trivial.

(ii) wo is central in W.

(iii) The opposition involution of X = X (W, V') is given by the action of wy.
(iV) wo = —1.

(v) W contains —1.

(vi) woD = —D for every chamber D.

If (W, S) is irreducible, these conditions are also equivalent to:

(vi) W has a nontrivial center.

Proof. From the original definition of oy, we see that it is trivial if and only
if wy commutes with each s € S. Hence (i) and (ii) are equivalent. On the
other hand, Proposition 1.130 shows that (i) holds if and only if opy; is type-
preserving. But this holds if and only if wg acts on X' as opy,. [If —1 is type-
preserving, then it agrees with wg on the vertices of the fundamental chamber;
moving out along galleries, one deduces that it agrees with wg on the entire
chamber complex X.] Thus (i) and (iii) are equivalent.

Next, the fact that (W, V) is essential implies that if wy and opy, agree as
simplicial maps, then wg = —1 as a linear map on V. This follows, for example,
from the fact that the vertices of X' can be identified with a set of unit vectors
that span V' (see Section 1.5.8). Hence (iii) and (iv) are equivalent. And (iv) is
equivalent to (v) because wy is the unique element of W that takes C' to —C.
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Turning now to (vi), we can argue that it is equivalent to (iii) because two
simplicial automorphisms that agree on all chambers must agree on all panels
and hence on all vertices. Alternatively, (vi) is equivalent to (ii) because (vi)
says that w is independent of the choice of fundamental chamber and hence
is invariant under conjugation.

Finally, if (W,S) is irreducible, then we have already shown in Corol-
lary 1.91 (see also Exercise 1.102) that the center of W is nontrivial if and
only if (v) holds. ]

Exercises

1.132. Give an example to show that we cannot drop the assumption that
(W, V) is essential in the corollary.

1.133. Using the classification of finite reflection groups (Section 1.3), find
the involution oy for as many of them as you can. [See Section 5.7 for the
complete list.

1.6.3 X' Is Determined by Its Chamber System

We continue to let X' be the chamber complex X (W, V) associated with a
finite reflection group. Choose a fundamental chamber C' and let S be the set
of fundamental reflections. Then, as we just saw in the previous subsection,
we have a canonical type function on X' with values in S. According to Sec-
tion A.1.4, this yields a “chamber system,” consisting of the set of chambers
together with “s-adjacency” relations, one for each s € S. For example, sC
and C' are s-adjacent for any s € S, since they have the same s-panel by
definition of the canonical type function. The action of W on X being type-
preserving (Corollary 1.129), it follows that wsC' is s-adjacent to wC for all
w € W and s € S. Thus the present s-adjacency relations are the same as
those defined at the end of Section 1.5.1.

Proposition 1.134. X satisfies the hypotheses of Proposition A.20. In par-
ticular, X is completely determined by its chamber system.

This is a special case of the following;:

Proposition 1.135. Let X' be the poset of cells associated to a hyperplane
arrangement. For any A € X and any chambers C, D € X5 4, every minimal
gallery joining C to D lies entirely in X'> 4. In particular, if X is simplicial
(and hence a chamber complex), then lkx, A is a chamber complez.

(Here lkx A is the link of A in X; see Definition A.19.)

Proof. This has already been proved in Exercise 1.67, but here is an indepen-
dent proof. Given chambers C, D, let I': C' = Cjy,...,C; = D be a minimal
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gallery. Then the walls Hy, ..., H; crossed by I" separate C' from D (Propo-
sition 1.56). For each i = 1,...,[, it follows that A is contained in both
closed half-spaces bounded by H;; hence A C H;. Assuming inductively that
A < C;_1, we conclude that A C C;_1NH; =C;_1 NC;; hence A< C;. O

We close with a trivial exercise, designed to force the reader to read the
definition of “residue” in Section A.1.4.

Exercise 1.136. Let Y again be the simplicial complex associated with a fi-
nite reflection group. Choose a fundamental chamber so that the set of cham-
bers can be identified with W. Show that the residues in the chamber system
of X are precisely the standard cosets in W. Thus we recover from Proposi-
tion A.20(4) our order-reversing bijection between X' and the set of standard
cosets.



2

Coxeter Groups

Let W be a group generated by a set S of elements of order 2. In case W is a
finite reflection group and S is the set of reflections with respect to the walls of
some fixed chambers, there is a rich geometric theory that can be constructed
from (W, .S) by pure group theory. For example, the standard cosets, ordered
by reverse inclusion, form a simplicial complex that triangulates a sphere
(see Section 1.5.9). In this chapter and the next, we try to develop a similar
geometric theory for more general pairs (W, S).

Two things will result from this study. First, we will discover some inter-
esting facts about the combinatorial group theory of finite reflection groups.
Second, we will discover a much larger class of groups W that deserve to be
called “reflection groups” (or, more precisely, discrete reflection groups). The
study of these groups W and their associated simplicial complexes was initi-
ated by Tits [240], who called the groups Cozeter groups and the complexes
Coxeter complexes.

2.1 The Action on Roots

We continue to denote by W be an arbitrary group generated by a set .S of ele-
ments of order 2. If W is to be a “reflection group,” then certain elements have
to be singled out as “reflections,” and they should be in 1-1 correspondence
with “walls.” Each wall should determine two “half-spaces” (or “roots”), and
there should be an action of W on these. We discussed this action in detail for
finite reflection groups in Section 1.5.10; see, in particular, Corollary 1.117.
This leads to the following condition that (W,.S) ought to satisfy if it is to
behave like a reflection group. We will call it condition (A) for “action”:

(A) Let T be the set of conjugates of elements of S. There is an action of W
on T x {£1} such that a generator s € S acts as the involution ps given by

) (sts,e) ift# s,
palte) = {(S, —€) ift=s.
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Definition 2.1. We will call the elements of T' reflections.

In the next chapter we will see that condition (A) is sufficient to let us
construct a simplicial complex ¥ = X(W,S) on which W acts, with the
elements of T" being reflections in a sense that will be made precise. For now,
however, we will simply use the word “reflection” as an aid to the intuition,
and we will explore the algebraic consequences of (A) using Chapter 1 as a
guide.

We begin by studying decompositions of elements of W as words in the
generating set S. Given w € W and a decomposition w = s1 -+ - s; with s; € S,
consider the sequence of reflections given by

ti = wi_lsiwi__ll (21)

fori = 1,...,1, where w; := s1---s;. We saw this sequence in Section 1.5.1;
in that setting, the decomposition of w corresponds to a gallery I' from C'
to wC (where C is the fundamental chamber) and the t; are the reflections
with respect to the walls crossed by I'. This motivates the following result:

Lemma 2.2. Suppose (W, S) satisfies (A). Then one can associate to each
w € W a finite subset T(w) C T with the following properties:

(1) |T(w)| = l(w), where | := lg 1is the length function on W with respect
to S.

(2) For any reduced decomposition w = sy---s;, the reflections t; defined
in (2.1) are distinct and are precisely the elements of T'(w).

(3) Consider an arbitrary decomposition w = s ---s;. For anyt € T, one has
t € T(w) if and only if t occurs an odd number of times in the sequence t;
defined in (2.1).

Proof. Tt should be clear that heuristically, T'(w) is supposed to be the set of
reflections with respect to the “walls that separate C' from wC.” For finite
reflection groups, Lemma 1.115 says that a wall H separates C from wC' if
and only if the action of w™! on the roots takes the positive root determined
by H to a negative root. With this as motivation, we define T'(w) by

T(w)={teT|w " (t,1)=(w 'tw,—1)} .

Consider now an arbitrary decomposition w = s1---s with s; € S. Since
w™l = s, s1, we can compute w~ ' - (¢,1) (for t € T) by first applying s1,
then applying ss, and so on. After applying sq,...,s;_1, we will have an
element of the form (w;_lltwi,l, €), where w;_1 = s1 -+ s;,_1 as above, and we
must apply s; to this element.

In view of the definition of ps,, the application of s; will change € to —e
if and only if w; ' tw;_; = s;, i.e., if and only if ¢t = ¢;. Hence w™"' - (t,1) =
(w™ttw, (—1)P), where p is the number of i such that t = ¢;. By the definition
of T'(w), we therefore have t € T'(w) if and only if p is odd. This proves (3).
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Parts (1) and (2) follow from (3) together with the following claim: Given a
reduced decomposition w = s - - - s;, the associated reflections t; are distinct.
To prove the claim, suppose t; = t; with 1 < ¢ < j7 < [. Then a simple
computation gives, exactly as in the proof of Theorem 1.69,

for some indices ¢ < j. This contradicts the assumption that we started with
a reduced decomposition, so the lemma is proved. a

This proof has the same amazing consequence that we observed for finite
reflection groups in Corollary 1.70. In order to state it, we introduce a second
condition, which we call the deletion condition, that a general pair (W, S) may
or may not satisfy:

(D) If w = 518y with m > l(w), then there are indices i < j such that
w:‘sl"'éi"'sj"'SM'

Corollary 2.3. If (W, S) satisfies (A), then it satisfies (D).

Proof. Suppose w = 81 - -+ 8, with m > I(w), and consider the corresponding
sequence of reflections ¢; (i = 1,...,m). These cannot all be distinct, since this
would imply, by assertion (3) of Lemma 2.2, |T'(w)| = m, contradicting (1).
Hence t; = t; for some ¢ < j, and we can delete two letters as above. a

2.2 Examples

2.2.1 Finite Reflection Groups

It is obvious that a finite reflection group as in Chapter 1 satisfies (A) (where
S is the set of reflections with respect to the walls of a fixed fundamental
chamber). Indeed, we arrived at the formulation of (A) by writing down a
condition that was already known for finite reflection groups (Corollary 1.117).

Conversely, it is true (but not obvious) that every finite group satisfy-
ing (A) is a finite reflection group. We will prove this in Section 2.5.4 below.
In view of this fact, our remaining examples will necessarily be infinite groups.

2.2.2 The Infinite Dihedral Group

Let W be the infinite dihedral group D... By definition, this is the group
defined by the presentation

W:=<s,t;52:t2:1>.

For readers not familiar with this notation for group presentations, it simply
means that we start with the free group F' := F(s,t) on two generators s, t and
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then divide out by the smallest normal subgroup containing s and t2. Note
that the finite dihedral groups Ds,, are quotients of W. It follows that the
generators s,t of F' map to distinct nontrivial elements of W, so no confusion
will result if we use the same letters s, ¢ to denote those elements of W. It also
follows that st has infinite order in W and hence that W is infinite.

Let S := {s,t} C W. We will explain from three different points of view
why (W, S) satisfies (A).

(i) Combinatorial group theory

The definition of W via the presentation above makes it easy to define homo-
morphisms from W to another group. One need only specify two elements of
the target group whose squares are trivial, and there is then a homomorphism
taking s and ¢ to these elements. In particular, if we want W to act on some
set, it suffices to specify involutions ps and p; of that set, and then we can
make s and t act as ps; and p;, respectively. Condition (A) is now evident.

(i) Buclidean geometry

We make W act as a group of isometries of the real line L by letting s act as
the reflection about 0 (z — —z) and ¢ act as the reflection about 1 (z — 2—z).
Note, then, that W acts as a group of affine transformations « — ax +b. This
action has an associated “chamber geometry,” entirely analogous to what
we saw in Chapter 1 for finite (linear) reflection groups. It is illustrated in
Figure 2.1, where C' denotes the open unit interval. The vertices in the picture
are the integers. The two colors, black and white, indicate the two W-orbits
of vertices.

stC sC C tC tsC

Fig. 2.1. The chambers for D; affine version.

One can now check that the set T in the statement of (A) is the set of
elements of W that act as reflections about integers, and one can identify
T x {£1} with the set of half-lines whose endpoint is an integer. The action
of W on L induces an action of W on this set of half-lines, and condition (A)
follows.

(iii) Linear algebra

There is a standard method for “linearizing” affine objects by embedding the
affine space in question as an affine hyperplane (i.e., a translate of a linear
hyperplane) in a vector space of one higher dimension. In the present case, we
do this by identifying the line L above with the affine line y = 1 in the plane
V = R2. The affine action of W on L extends to a linear action of W on V.
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Explicitly, since we want s(z,1) = (—z,1), we can set s(x,y) = (—z,y); in
other words, we can make s act via the matrix

-1 0
0o 1)
Similarly, to make ¢(z,1) = (2 — z, 1), we can set t(x,y) := (2y — x,y); thus ¢

acts via the matrix
-1 2
0 1)

The picture of W acting on V is shown in Figure 2.2. It is simply the
cone over the picture of W acting on L. (C' now denotes the cone over the
unit interval in the line y = 1.) The set 7" is now the set of reflections with
respect to the walls of the chambers shown in the picture, and we may identify
T x {£1} with the set of half-planes determined by these walls. Condition (A)
now follows easily from the action of W on these half-planes.

stC sC

A

Fig. 2.2. The chambers for D; linear version.

Let’s compare this situation with that of Chapter 1. As in that context, s
and t act as linear reflections on V', provided we interpret this term suitably:

Definition 2.4. If V is a real vector space, not necessarily endowed with an
inner product, then a linear reflection on V is a linear map that is the identity
on a (linear) hyperplane H and is multiplication by —1 on some complement
of H, i.e., a 1-dimensional subspace H' such that V = H @ H'. The reflections
considered in Chapter 1, where V has an inner product and H' = H*, will
be called orthogonal reflections from now on to distinguish them from the
more general linear reflections that we have just defined. Note that a linear
reflection is mot uniquely determined by its hyperplane H of fixed points.

In the present example it is still true, as in Chapter 1, that W is gener-
ated by linear reflections whose associated hyperplanes are the two walls of a
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“fundamental chamber” C. And it is still true that C is a strict fundamental
domain for the action of W on (J,, oy wC. But this union is not the whole
vector space V. It is, rather, the convex cone consisting of the open upper
half-plane together with the origin. This is a very general phenomenon, as we
will see in Section 2.6.

Note that the chamber geometry for W acting on V is very similar to
the chamber geometry for finite reflection groups. For example, the chamber
graph can be identified with the Cayley graph of (W, S), and the analogue
of Proposition 1.118 remains valid (with the same proof). We record this
explicitly for future reference. Let Hy, and H; be the fixed hyperplanes of
s and t, respectively, and let Uy(s) and UL(t) be the corresponding open
half-spaces, where the positive half-space is the one containing C'.

Lemma 2.5. For all w € W, wC C U4(s) if and only if l(sw) > l(w), and
wC C Uy (t) if and only if I(tw) > l(w). O

Finally, we will show that our representation of W as a “linear reflection
group” admits a description resembling the description of a finite reflection
group in terms of its Coxeter matrix (Section 1.5.5). Since we have no natural
inner product on V, we introduce the dual space V* and use inner-product
notation for the canonical pairing V* x V — R, i.e.,

(fv) = f(v)
for f € V* and v € V. Define ez, e, € V* by

(es, (z,y)) ==z,
<et7 (.T, y)> =y—T.

With these definitions, the fixed hyperplane for s is given by (es, —) = 0, the
fixed hyperplane for ¢ is given by (e;, —) = 0, and the fundamental chamber C
is given by (es, —) > 0 and (e;, —) > 0.

We still have a Coxeter matrix M specifying the orders of the pairwise
products of the generators. It is given by

M:(Olo 010).

The corresponding Coxeter diagram is o—°%—o. Imitating equation (1.22), we
now put a symmetric bilinear form on V* by setting

Bles, es) = Bler, er) = fcosg =1

and -
B(es,er) = Bleg,es) = —cos — = —1.
(es,e¢) (e, e5) cos —

Next, define linear reflections s',¢' on V* by using this bilinear form as in
equation (1.23):
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sl(f) = f—QB(es,f)eS )
t'(f) = f—2B(es fer -

Note that s'(es) = —es and s’ fixes the hyperplane B(es,—) = 0, which is
spanned by eg +e¢;; so s’ is indeed a reflection. Similarly, ¢’ is a reflection, with
the same fixed hyperplane.

It turns out that s’ and ¢’ are the reflections s* and t* on V* induced by
s and t. To check this, one can simply compute s* and t* on es and e;. For
example,

(s(es), (z,)) = (s, 8(2,y)) = (es, (=2,9)) = =2 = (—es, (2,9))

S0 s*(es) = —es = s'(es). The remaining computations are equally easy and
are left to the reader.

In summary, our reflection representation of Dy, on V could have been
obtained as follows: Start with an abstract vector space Res & Re; [which
is our V*] and define a linear action of Do, on it by copying the formulas
from the finite case, using the Coxeter matrix. Now pass to the dual space
(Res ®Ret)* [which is our V] to obtain an action in which we have the familiar
sort of chamber geometry.

Remark 2.6. It is natural to ask whether we had to pass to the dual space in
order to obtain the chamber geometry. The answer is yes—our two fundamen-
tal reflections acting on Reg & Re; have the same fixed hyperplane, so they
do not determine a chamber in that space. See Exercise 2.7 below for further
insight into the difference between the Do-action on V and its action on V*.
In the finite case, on the other hand, the duality was hidden because, in the
presence of a W-invariant inner product, there is a canonical identification of
V with its dual. We will return to this circle of ideas in Section 2.5 below.

Exercise 2.7.

(a) If s is a linear reflection on a 2-dimensional vector space V, show that
the only s-invariant affine lines not passing through the origin are those
parallel to the (—1)-eigenspace.

(b) Deduce that two linear reflections s,¢ of V' have a common invariant
line not passing through the origin if and only if they have the same
(—1)-eigenspace.

(c) Suppose s and t have the same (41)-eigenspace. Show that the induced
reflections s* and t* of V* have the same (—1)-eigenspace.

2.2.3 The Group PGL2(Z)

Let GL2(Z) be the group of 2x 2 invertible matrices over the ring Z of integers.
Let PGL3(Z) be the quotient of GL2(Z) by the central subgroup of order two
generated by —1 (= the negative of the identity matrix). Thus PGLy(Z) is
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obtained from GLy(Z) by identifying a matrix with its negative. We denote a
typical element of GLy(Z) by
a b
(¢

a b
c d| -’
It is easy to check that W := PGLy(Z) is generated by the set S =
{51, $2, 83} of elements of order 2 defined by

101 -1 1 -1 0
S0 T looa) BT o1
(One can see this by thinking about elementary row operations.) We now show
that condition (A) is satisfied. We will use three different methods, analogous
to those used for D... In each of the three cases, however, we will have to
use one or more nontrivial facts that will be stated without proof. Readers

who are not familiar with these facts are advised to just read the discussion
casually for the main ideas.

and its image in PGLy(Z) by

(i) Combinatorial group theory

A simple computation shows that the products siss, s183, and sos3 have
orders 3, 2, and oo, respectively. It is also true (but not obvious) that W
admits a presentation in which the defining relations simply specify the orders
of these pairwise products:

W = (s1,82,83; 81 =85 =253 =(s152)° = (s183)° =1) .

[Some readers will be familiar with the fact that W has a subgroup PSLy(Z)
of index 2 that admits a presentation <u, viud=0v2=1 >; see Serre [217, Sec-
tion I.4.2] or Lehner [152, Sections IV.5H and VII.2F]. It is not too hard to de-
duce the presentation for W stated above from this presentation for PSLy(Z).]

To verify (A), now, we need only check that the involutions p; := ps, that
occur in the statement of (A) satisfy the defining relations for W. Consider,
for instance, the relation (p1p2)® = 1. Let S’ := {s1,s2} and let W’ be the
dihedral group of order 6 generated by S’. The set T” of reflections in W’ (i.e.,
the W’-conjugates of s; and s3), form a subset of the set T of reflections in W
(the W-conjugates of the elements of S).

Suppose, now, that we apply (p1p2)3 to (t,€) € T'x {£1}. Since (s152)% = 1
in W, we will get (¢, £e). Clearly the only thing we have to worry about is
the possibility of sign changes in the second factor as we successively apply
the p;. But no sign changes will ever occur unless there is an element w’ € W’
with w'tw'~! € S, in which case we have t € T”. Thus we are reduced to
showing that (p1p2)? is the identity on 7" x {#£1}, which follows from the fact
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that W' is a finite reflection group and hence is already known to satisfy (A).
[Alternatively, we could complete the proof by doing an easy computation in
the dihedral group Dg.]

Remark 2.8. Note, for future reference, that this proof works whenever W
admits a presentation of the form

W = <S : (st)™t) = 1> ,

where m(s, t) is the order of st and there is one relation for each pair s,t such
that m(s,t) < co. We will return to this in Section 2.4.

(i) Hyperbolic geometry

There is a famous tessellation of the hyperbolic plane by ideal hyperbolic tri-
angles (i.e., triangles having their vertices on the circle at infinity). Figure 2.3
shows this tessellation in the unit disk model of the hyperbolic plane.*

Fig. 2.3. A tessellation of the hyperbolic plane.

The (hyperbolic) lines of symmetry of this tessellation barycentrically sub-
divide it; see Figure 2.4. The group of symmetries of the original tessellation
is the group of hyperbolic isometries generated by the reflections with respect

* Figures 2.3 and 2.4 first appeared in Klein—Fricke [145, pp. 111 and 112]. Fig-
ure 2.5 is based on a picture in [145, p. 106]. We are grateful to Cornell Univer-
sity Library’s Historic Monograph Collection for providing digital images of these
pictures.
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Fig. 2.4. The same tessellation, subdivided by the lines of symmetry.

to the lines of symmetry, and it is, in fact, precisely the group W. In order to
explain this in slightly more detail, we switch to the upper-half-plane model
of the hyperbolic plane. Figure 2.5 shows the barycentric subdivision in this
model. To relate the two models of the hyperbolic plane, one should think of
the vertices of the big triangle in Figure 2.3 as corresponding to the points
0, 1, and oo in Figure 2.5. The barycenter of this big triangle is shown as a
heavy dot in Figure 2.5. The action of W on the upper half-plane is given by

GO d—be—1,
a b cz+d
¢ d T az+b
— if ad — bc = —1,
cz+d

where Z is the complex conjugate of z. Many readers will be familiar with this
action restricted to PSLs(Z), where, of course, complex conjugation does not
arise. Complex conjugation is necessary for the full group W, however, because
elements of negative determinant acting by linear fractional transformations
interchange the upper and lower half-planes.

Now under this action, the generating set .S of W is the set of reflections in
the three sides of one of the “chambers” C, as indicated in Figure 2.5. More-
over, it is known that C is a strict fundamental domain for the action of W.
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S3 S92 ~ —

0 1/2 1
Fig. 2.5. The barycentric subdivision in the upper-half-plane model.

A proof of this can be found in almost any book that discusses modular forms.
[Actually it is more likely that the analogous fact about PSLy(Z) is proved:
C U s3C is a fundamental domain (but not a strict fundamental domain) for
this group. See, for instance, Serre [215, Section VII.1.2] or Lehner [152, Sec-
tion IV.5H].]

Readers who have followed all of this can probably complete the geometric
proof that (W, S) satisfies condition (A). Just identify T' x {£1} with the set
of hyperbolic half-planes determined by the hyperbolic lines in Figure 2.5, and
use the action of W on these half-planes.

(iii) Linear algebra

As was the case with the group D, the linear algebra approach will take
the longest to explain. But it is quite instructive and worth at least reading
through, without necessarily checking all the details. It is based on a 3-dimen-
sional linear representation of W that has been studied extensively, starting
with Gauss.

The vector space V on which W acts is the space of real quadratic forms ¢
in two variables, i.e., the space of functions q: R? — R given by q(z) = az? +
20179 + cx3, where x = (21, 72). Note that we can also write ¢(z) = 8(z, x),
where 3 is the bilinear form on R? with matrix

A= <Z ’2) .



76 2 Coxeter Groups

Thus we can, when it is convenient, identify V' with the space of symmetric
bilinear forms on R2, or, equivalently, with the space of real, symmetric 2 x 2
matrices.

The group G = GL2(R) acts on V' by

(9-9)(x) = q(zg)

for g € G, q € V, and = € R?, where z is viewed as a row vector on the right
side of the equation. This action is said to be by change of variable, since g-q is
obtained from ¢ by replacing 21 and x5 by linear functions of zy and x5 (with
coefficients given by the columns of g). In terms of the symmetric matrix A
corresponding to g, the action of g is given by A — gAgt, where g' is the
transpose of g.

The elements ¢ € V fall into exactly six orbits under the action of G.
First, there are three types of nondegenerate forms: positive definite (G-equiv-
alent to x7 + 22); negative definite (G-equivalent to —z% — :3); and indefinite
(G-equivalent to 27 —22). Next, there are the nonzero degenerate forms, which
are either positive semidefinite (G-equivalent to x%) or negative semidefinite
(G-equivalent to —z?%). And finally, there is the zero form.

It is easy to visualize this partition of V' into G-orbits. Let Q: V — R be
given by

Q(q) := —det A =b* —ac,

where A is the matrix corresponding to ¢ as above. (Thus @ is a quadratic
form on the 3-dimensional space V' of quadratic forms.) Then the degenerate
forms q are the points of the quadric surface @ = 0 in V. If we introduce new
coordinates z,y, z in V' by setting

b==x,
a=z+y,
c=z-y,

then Q becomes z2 +y? — 22, so the quadric surface of degenerate forms is the
double cone z? = 22 + y2. [Draw a picture!] The exterior of the cone is given
by @ > 0 and consists of the indefinite forms. And the interior @) < 0 has two
components, the upper half (z > 0), consisting of the positive definite forms,
and the lower half, consisting of the negative definite forms.

The action of G = GLy(R) on V is really an action of the quotient
G/{+1} = PGL3y(R), so we may restrict the action to W = PGLy(Z) <
PGL2(R). This is the desired 3-dimensional representation of . Here are the
basic facts about this representation:

First, the W-action leaves the form @ invariant, i.e., Q(wq) = Q(q) for
w € W and ¢ € V. This follows from the fact that every g € GL2(Z) has
det g = £1, so that

det gAg' = (det g)*det A = det A
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for any symmetric 2 x 2 matrix A. So W also leaves invariant the symmetric
bilinear form B on V such that Q(q) = B(g,q). One can easily compute B
explicitly; in terms of symmetric matrices, we have

B(A,A") =bb' — %(ac’ +dc),

_f(a b , fd Y
A_<b c> and A—(b, c’)'

The next observation is that the generators s; of W act on V as linear
reflections. In fact, computing the (£1)-eigenspaces of s;, one finds that s;
has a 1-dimensional (—1)-eigenspace Re; and that s; fixes the hyperplane
H; := e;*, where e;* is defined with respect to our bilinear form B(—,—).
One can take the e;, which are determined up to scalar multiplication, to be
the following symmetric matrices:

(10 (-1 41 (0 1
“a=\lo —-1) “27{=1 o =7\ o)

And the fixed hyperplanes H; are given, respectively, by a = ¢, ¢ = 2b,
and b= 0.

We chose the eigenvectors e; above so that they would satisfy Q(e;) = 1;
this determines them up to sign. It then follows as a formal consequence that
the reflections s; are given by the usual formula:

where

5iq = q — 2B(ei, q)eq;

for the map defined by this formula is the identity on e;* and sends e; to —e;.

We now focus on the action of W on the cone P of positive definite
forms, and we look for a fundamental domain for this action. Concretely,
this means that we are looking for canonical representatives for the positive
definite forms ¢ under integral change of variable. Gauss found the following
fundamental domain. Let C' be the simplicial cone in V' defined by the inequal-
ities @ > ¢ > 2b > 0. Then C C P, and C is (more or less) a fundamental
domain for the action of W on P.

The qualifier “more or less” here refers to the fact that C touches the
boundary of P. For if one computes the vertices of C' (i.e., the rays that are
1-dimensional faces of C'), one finds that they are represented by the forms
23, 22 + 23, and 2% + x122 + 23, the first of which is degenerate. So the correct
statement is the following: Let X be the convex cone in V consisting of the
positive definite forms together with the forms A(ax1 + bx2)2 with A > 0 and
a,b € Z. Then X =, e wC, and C is a strict fundamental domain for the
action of W on X; moreover, the open simplicial cones wC' are disjoint from
one another.

Note that the walls of C' are precisely the fixed hyperplanes H; of the
reflections s;. So we have, once again, the usual sort of chamber geometry,
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and it is possible to verify condition (A) by identifying 7" x {1} with the
half-spaces in V' determined by the walls of the chambers wC'. Details are
omitted.

One final comment: We normalized the e; above so that we would have
B(e;,—) > 0 on C. In view of Chapter 1 and the infinite dihedral group
example, it is therefore to be expected that

™
B(ei7ej) = —Ccos M )

where my; is the order of s;s;. This is indeed the case, as direct computation
shows. Thus our representation of W acting on V' is what we should now be
ready to call the “canonical linear representation” of W. Note also, for future
reference, that the bilinear form B in this example is nondegenerate, although
not positive definite. Indeed, we showed above that @ could be written as
2% 4+ y? — 22 after a change of coordinates in V, so B has signature (2, 1)
[there are 2 plus signs and 1 minus sign].

Exercise 2.9. What is the connection between the points of view in (ii)
and (iii)?

2.3 Consequences of the Deletion Condition

We return to the general theory, which is much easier than the examples.
Thus W is an arbitrary group with a set S of generators of order 2. We saw at
the end of Section 2.1 that if the action condition (A) holds then so does the
deletion condition (D). We now explore some consequences of (D). We begin
by giving two reformulations of it.

2.3.1 Equivalent Forms of (D)

We will need to formalize the concept of “word,” which we have already
used informally. By a word in the generating set S we mean a sequence
s = (s1,...,84) of elements of S. We will often be less formal and simply
say that the “expression” s ---s4 is a word. But we must be careful to dis-
tinguish a word s from the element w = s1---sq4 € W that it represents.
Whenever there is danger of confusion, we will be more precise and revert to
the sequence notation (s1,...,Sq).

Definition 2.10. A word s = (s1,..., sq) is called reduced if the correspond-
ing element w := s; - - - 84 has length [(w) = d, i.e., if it cannot be represented
by a shorter word. We will also say, in this situation, that s is a reduced de-
composition of w, or, less formally, that the equation w = s7 - - - s4 is a reduced
decomposition of w.
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We can now state the first consequence of condition (D). It is called the
exchange condition:

(E) Givenw e W, s €S, and any reduced decomposition w = sy --- 84 of w,
either [(sw) = d + 1 or else there is an index i such that

W =881 +S;° "84 -

The proof that (D) implies (E) is immediate. For if [(sw) < d+1, then (D)
implies that sw is equal to ss; - -+ s4 with two letters deleted. Since I(w) = d,
one of the deleted letters must be the initial s; multiplying by s, we obtain
the conclusion of (E).

In order to put (E) into perspective, note that for general (W, S), we have
the following three possibilities for I(sw): (a) {(sw) = I(w) + 1; this happens
if and only if we get a reduced decomposition of sw by putting s in front of a
reduced decomposition of w. (b) I(sw) = {(w) — 1; this happens if and only if
w admits a reduced decomposition starting with s. (c) I(sw) = l(w).

[Possibility (c) might seem counterintuitive at first, but easy examples
show that it can happen. See the note following Exercise 1.76.]

The content of (E), then, is the following: First, possibility (c) is prohib-
ited. Second, if (b) holds then we can always find a reduced decomposition of w
starting with s by taking an arbitrary reduced decomposition w = s1---s4
and then “exchanging” a suitable letter s; for an s in front.

Note that (E) seems to be asymmetric, in that it involves only left multi-
plication by elements of S; but if (E) holds, then we can apply it to w=! to
deduce the analogous fact about right multiplication. We will use this obser-
vation without comment whenever it is convenient.

Next we record a consequence of (E). It will be called the folding condition
for reasons that will become clear in Section 3.3.3 (see Remark 3.40).

(F) Givenw € W and s,t € S such that l(sw) = l(w)+1 and I(wt) = l(w)+1,
either l(swt) = l(w) + 2 or else swt = w.

To see that (E) implies (F), take a reduced decomposition w = s1 - - s4.
Then the word s; - - - s4t is a reduced decomposition of wt. Applying (E) to s
and wt, we conclude that either [(swt) = d+ 2 or else we can exchange one of
the letters in s - - - s4t for an s in front. Now the letter exchanged for s cannot
be an s;, since that would contradict the assumption that I(sw) = d + 1; so
the letter must be the final ¢. Thus wt = sw; hence swt = w.

Finally, we show that (F) implies (D): Suppose w = 1 - - - 8¢ with d > [(w).
Assuming (F), we will show by induction on d that we can delete two letters.
We may assume that the words s1---s4_1 and ss---sq are both reduced;
otherwise, we are done by the induction hypothesis. Set w’ = s -+ s4_1. (This
makes sense, because we necessarily have d > 2.) Then I(s;w’) = l(w') + 1 =
l(w'sgq), and I(s1w'sq) < l(w') 4+ 2; so (F) implies that s;w’sq = w’, i.e., that
w = 5152 e Sd—léd-
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In summary, we now know the following relations among the four condi-
tions that we have introduced:

Proposition 2.11. Given a pair (W, S) consisting of a group W and a set S
of generators of order 2, we have

(A) = (D) < (E) < (F). O

2.3.2 Parabolic Subgroups and Cosets

Assume throughout this subsection that (W, S) satisfies the equivalent condi-
tions (D), (E), and (F). We will derive some important consequences, mostly
involving standard parabolic subgroups and cosets. These are defined exactly
as in the case of finite reflection groups:

Definition 2.12. For any subset J C S, we denote by W the subgroup (J)
generated by J. We call W a standard parabolic subgroup, or simply a standard
subgroup. Any coset wW; will be called a standard coset.

Proposition 2.13. The function J — Wy is a poset isomorphism from the
set of subsets of S to the set of standard subgroups of W, where both sets are
ordered by inclusion. The inverse is given by W' — W' N S.

Proof. Consider the map from standard subgroups to subsets of S given by
W’ — W’'NS for any standard subgroup W’. It is clear that W’ = (W' NS) if
W' is a standard subgroup. It is also clear that J C W;NS for any J C S. To
prove the opposite inclusion, suppose s € W; N S. Then we can express s as
a J-word and repeatedly apply the deletion condition until the word’s length
has been reduced to 1; thus s € J. Hence J = W; N S, and our two maps
are inverses of one another. Finally, both maps clearly preserve inclusions, so
they are poset isomorphisms. a

Our next observation is that when dealing with elements w of standard
subgroups, we can write [(w) without ambiguity.

Proposition 2.14. Let W; be a standard subgroup, where J C S. For any
w e W];
ly(w) =lg(w) .

Proof. Suppose we have a J-reduced decomposition
W= 8] 5q. (2.2)

Thus s; € J for each i and there is no shorter J-word representing w. We must
show that there is no shorter S-word representing w. If there were a shorter
S-word representing w, then we could get one by deleting two letters in (2.2).
But this would contradict the assumption that the decomposition in (2.2) is
J-reduced. O
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Here is another easy, but very useful, consequence of the deletion condition:

Lemma 2.15. Given J C S, w € Wy, and s € S~ J, we have l(sw) =
l(w) + 1.

Proof. Choose a reduced decomposition w = sy ---s; with s; € J for all 7.
Suppose [(sw) < l(w). Then w = ss1---§;---s; for some i by the exchange
condition. This implies that s € W; NS = J, where the equality follows from
Proposition 2.13. But this contradicts our hypothesis that s ¢ J, so we must
have [(sw) > l(w) and hence [(sw) = l(w) + 1. O

This leads to the following useful result:

Proposition 2.16. For any w € W there is a subset S(w) C S such that all
reduced decompositions of w involve precisely the letters in S(w). Moreover,
S(w) is the smallest subset J C S with w € Wj.

Proof. Both assertions will follow if we prove the following: Given two decom-
positions w = s1---8 = ty---t,. with the one on the left reduced, each s;
is equal to some t;. We argue by induction on ! = [(w), which may be as-
sumed > 0. Let J = {ty,...,t.}. Since w € W and I(syw) < I(w), the lemma
implies that s; € J. Now s -+ = syw € Wy, so we also have so,...,5 € J
by the induction hypothesis. a

Proposition 2.17. Fiz w € W and let J := {s € S |l(sw) < l(w)}. Then
every reduced J-word can occur as an initial subword of a reduced decomposi-

tion of w. Hence
l(w'w) = l(w) — I(w) (2.3)

for every w' € Wj. In particular, the length function is bounded on W ;.

Proof. Let t1---t; be a reduced J-word. Arguing by induction on [, we may
assume that we have a reduced decomposition

w:tQ"'tl81"'8r.

Since I(tyw) < l(w), we can exchange one of the letters in this decomposition
for a t; in front. The exchanged letter cannot be a t;, since that would con-
tradict the assumption that the word t; - - - ¢; is reduced. So it must be an s;;
hence

W=ty 18188y

This proves the first assertion of the proposition. Applying it to a J-reduced
decomposition of w'~1, we obtain (2.3). Finally, (2.3) shows that the length
function on W is bounded by I(w). O

Note that the last assertion of the proposition implies that W is finite if
J is finite. Of course J is automatically finite if S is finite, which it is in most
applications of the theory. But Proposition 2.16 implies that J is finite even if
S is infinite, since J C S(w), and the latter is obviously finite. Proposition 2.17
therefore has the following consequence:
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Corollary 2.18. With J as in Proposition 2.17, the group Wy is finite. O
Here is an important special case:

Corollary 2.19. W is finite if and only if it has an element wqy such that
l(swo) < l(wp) for all s € S. In this case wy has mazimal length and is the
unique element of maximal length, and it has order 2. Moreover,

l(wwg) = l(wp) — l(w) (2.4)
for allw e W.

Proof. If W is finite, it obviously has an element wg of maximal length, and
then necessarily I(swg) < I(wp) for all s € S. Conversely, if wy is an element
such that I(swp) < l(wp) for all s, then in fact I(swg) < I(wg) for all s (see
Section 2.3.1), so W is finite by Corollary 2.18, and equation (2.4) follows
from (2.3). Taking w = wp in (2.4), we see that w? = 1. And taking w # wy
in (2.4), we see that l[(w) < I(wyg), so wp has maximal length and is the unique
element of maximal length. a

We have already encountered wg several times in Chapter 1, starting in
Section 1.5.2. See Exercise 1.59 for a geometric explanation of the fact that
wy is characterized by the inequality I(swg) < I(wg) for all s. [Note that this
can also be written as [(wps) < I(wg) for all s.]

Next, we show how the deletion condition leads to an interesting result
about standard cosets.

Proposition 2.20. Let W be a standard subgroup (J C S). Then every left
coset wW; has a unique representative wy of minimal length. It is character-
ized by the property

l(wys) = l(wy) + 1 (2.5)

for all s € J. Moreover,
lwiwy) = Hwy) + (wy) (2.6)
for all wy € Wj.

Proof. Choose w; of minimal length in the coset. Then I(wys) > I(wy) for all
s € J; hence (2.5) holds. To prove (2.6) (which implies the uniqueness of w;),
choose a reduced decomposition w; = s1---5;, and consider an arbitrary
element wy; € W; and an arbitrary reduced J-decomposition wy = t1---t,
(t; € J). We must show that the word sy - - - s;¢1 - - - £, is reduced.

If sq---s;t1 -+ -t is not reduced, then we can delete two letters. Neither
deleted letter can be an s;, since that would yield an element of w; W shorter
than wy. On the other hand, the deleted letters cannot both be ¢;’s, since that
would yield a shorter decomposition of w;. So we have a contradiction, and
the decomposition wywy = s1--- s;t1 - - - t,- is indeed reduced.

Finally, if wy # 1, then » > 0 and l(wjw t,) < {(wywy). Thus wy is the
unique element of the coset satisfying (2.5) for all s € J. O
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Definition 2.21. Given s € S, we say that an element w € W is (right)
s-reduced if [(ws) = l(w)+1. Given J C S, we say that w is (right) J-reduced if
it is s-reduced for all s € J. One defines “left s-reduced” and “left J-reduced”
elements similarly. Finally, given two subsets J, K C S, we say that an element
w e W is (J, K)-reduced if it is left J-reduced and right K-reduced.

Thus the proposition says that the minimal-length representative of a left
W r-coset is the unique right J-reduced element of that coset. Left-reduced
elements are similarly related to right cosets Wyw, and, as we will see, (J, K)-
reduced elements are related to double cosets W wWg .

Remark 2.22. To get some geometric intuition for Proposition 2.20, sup-
pose W is a finite reflection group. Then standard cosets wW; correspond to
simplices A, and coset representatives correspond to chambers D > A. The
representative of minimal length corresponds to the chamber D; > A that
is closest to the fundamental chamber C, i.e., D; = AC (see Section 1.4.6).
Moreover, equation (2.6) is a restatement of the gate property of Exercise 1.42;
see Exercise 2.27 below.

It turns out that general products AB (with B not necessarily a chamber)
are related to double cosets. We will explain this in the next chapter in a more
general setting where the groups are not necessarily finite. Our treatment will
make use of the following generalization of Proposition 2.20 to double cosets:

Proposition 2.23. Let W; and Wi be standard subgroups (J, K C S). Then
every (Wi, Wg)-double coset WywWi has a unique representative wy of min-
imal length. It is (J, K)-reduced and is the unique (J, K)-reduced element of
the double coset. Moreover, every element w of the double coset W w1 Wi can
be written as

W= WjWWEK (2.7)

with wy € Wy, wg € Wk, and
l(w) =l wy) 4+ l(w) + Hwgk) . (2.8)
The proof will use the following consequence of (D):

Lemma 2.24. Let J and K be subsets of S, and let wy be an element of
minimal length in its double coset Wyw Wi . Suppose u € Wy and v € Wi
are elements such that [(uwyv) < l(u) + I(w1) + (v). Given reduced decom-

positions u = sy---5;, and v = t1---t,., we have vwrv = vw'wiv', where
W o= 81---8---5 and v = ty---t;---t, for some indices 1 < i <[ and
1<j<r.

Proof. Consider the decomposition of uw;v obtained by combining the given
decompositions of v and v with a reduced decomposition of w;. By hypothesis
this is not reduced, so we can delete two letters. The assumption on w; implies
that neither of the deleted letters can involve the wi-part of the word. Since
we used reduced decompositions of u and v, the only possibility is that one
deleted letter is an s; and the other is a t;. O
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Proof of the proposition. Choose w; of minimal length in the double coset.
Then w; is trivially (J, K)-reduced. Next, repeated applications of Lemma
2.24 show that any element w € Wjw; Wk can be written as in (2.7) in
such a way that (2.8) holds; this implies that w; is the unique element of
minimal length. Finally, if w; in (2.7) is nontrivial then w is not left J-reduced,
and if wg is nontrivial then w is not right K-reduced. Hence w; is the only
(J, K)-reduced element of the double coset. O

We close with a technical result that will be needed in Chapter 5. It will
actually fall out of our treatment of products in Section 3.6.4 (see Exer-
cise 3.114), but we present here a purely group-theoretic proof.

Lemma 2.25. With the notation of Proposition 2.23,
Wy NwWrwyt =Wy, |
where Jy := Jﬂlewl_l.

Proof. Given u € WJﬂlewal, we must show that v € W, . Equivalently,
given u € Wy and v € Wi such that uww;v = w;, we must show that v € Wj,.
Note first that by repeated applications of Lemma 2.24, we have [(u) = I(v).
Write u = $1---8, with s1,...,8, € J and n = l(u) = I(v). We show by
induction on n that s; € leVwa1 for all .

We have I(s,wiv) < I(sy) + l(wy) + I(v) = 1 4 I(w1) + n, since otherwise
uwiv = (81 -+ Sp—1)(spuv) would have length > (s, wiv)—(n—1) = l(wy)+2.
We can now apply Lemma 2.24 again to get s,wiv = wiv’' for some
v" € Wk and hence s, € w1WKw1_1. But we also have w; = wwiv =
(81 Sp—1)Spwiv = (81--+Sp_1)wiv’. So we can apply the induction hy-
pothesis to deduce that also s1,...,8,.1 € lewal. Finally, we observe
that s = wyzw; " with s € J and 2 € Wx implies I(z) = 1 by the argument
at the beginning of the proof (swlx_l = wy). So indeed we have s; € J; for
all 4; hence u € Wy, . O

Exercises

Assume throughout these exercises that (W, S) satisfies the deletion condition.

2.26. Given two standard subgroups W;, Wy (J, K C S), show that their
intersection W; N Wiy is the standard subgroup W;nk. Generalize to an ar-
bitrary family of standard subgroups.

2.27. If W is a finite reflection group, rewrite equation (2.6) to get the gate
property of Exercise 1.42.

2.28. Let w = s1---5,, where the s; are distinct elements of S. Show that
l(w) =n.
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2.29. Assume that the Coxeter diagram of (W, S) has no isolated nodes. Show
that every proper standard subgroup of W has index at least 3.

2.30. Suppose that the elements of S can be enumerated as sq,..., s, so that
m(s;, 8i4+1) > 2fori=1,...,n—1. Thus the Coxeter diagram contains a path
of length n — 1. Set w; := s1s9---s; fort =0,...,n.

(a) Show that the word defining w; is reduced, i.e., l(w;) = i.
(b) If j # 4, show that l[(w;s;) =i+ 1, i.e., w; is right sj-reduced in the sense
of Definition 2.21.

2.31. Let W be the finite reflection group of type A,_1 (symmetric group on
n letters) with its standard generators si,...,s,-1, and set J := 5~ {s1}.

(a) Show that the right J-reduced elements are the n elements w; :=
S; 8281 (i:(),...,n—l).

(b) List the left J-reduced elements of W and the (J, J)-reduced elements.

(¢) Generalize to the case n = cc.

2.3.3 The Word Problem

We continue to assume that (W,S) satisfies the equivalent conditions (D),
(E), and (F). The word problem seeks an algorithm that does the following:
Given two S-words s = (s1,...,84) and t = (¢1,...,t.), decide whether they
represent the same element of W. Let’s begin with the case of a dihedral group
Dy, generated by two elements s, ¢ such that st has order m (2 < m < o0).

It is obvious, first of all, that we may confine our attention to alternating
words s and t, i.e., words with no consecutive s’s or t’s. Secondly, we may
assume that both words have length at most m. For the relation (st)™ =1 (if
m is finite) can be rewritten as

stst--- =tsts--- (2.9)

where both sides have length m. So in any alternating word of length > m, we
can take a subword (s,t,...) of length m and replace it by the word (¢, s,...)
of length m, thereby creating an (s, s) or (¢,t) that can be deleted. Finally, the
word problem for alternating words of length < m has the following simple
solution: The only two distinct alternating words of length < m that represent
the same element of Da,, are the two of length m (when m < 00), as in (2.9).
The proof is an easy computation, which is left to the reader. [Alternatively,
think about what galleries look like when the plane is divided into 2m cham-
bers by m lines through the origin (if m is finite) or when the line is divided
into infinitely many intervals (if m is infinite).]
Returning now to a general (W, .S), not necessarily dihedral, consider the
Coxeter matrix
M := (m(s,t))

s,tesS?

where m(s,t) is the order of st.
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Definition 2.32. By an elementary M -operation on a word we mean an op-
eration of one of the following two types:

(I) Delete a subword of the form (s, s).

(IT) Given s,t € S with s # ¢t and m(s,t) < oo, replace an alternating sub-
word (s, t,...) of length m = m(s,t) by the alternating word (¢, s,...) of
length m.

Call a word M -reduced if it cannot be shortened by any finite sequence of
elementary M-operations.

It is not hard to see that one can algorithmically enumerate all possible
words obtainable from a given one by elementary M-operations. [For exam-
ples, see Exercises 2.38 and 2.39 below.] In particular, one can decide whether
a word is M-reduced. Similarly, one can decide whether a word s can be con-
verted to a given word t by means of elementary M-operations. Consequently,
the following theorem of Tits [246] solves the word problem.

Theorem 2.33.

(1) A word is reduced if and only if it is M -reduced.
(2) If s and t are reduced, then they represent the same element of W if and
only if s can be transformed to t by elementary M -operations of type (IT).

Proof. We begin with (2), for which it suffices to prove the “only if” part.
Suppose s = (s1,...,84) and t = (¢1,...,t4) are reduced words representing
the same element w € W. We will show by induction on d = I(w) that s can
be changed to t by operations of type (II). Let s = s; and ¢ = ¢;. There are
two cases.

(a) s = t. Then we can cancel the first letter from each side of the equation

Sl...sd:tl...td7

and we are done by the induction hypothesis.

(b) s # t. Since I(sw) < l(w) and I(tw) < I(w), Proposition 2.17 implies
that m := m(s,t) is finite and that there is a reduced decomposition u of w
starting with the alternating word (s,t,s,¢,...) of length m. Let u’ be the
word obtained from u by replacing this initial segment of length m by the
word (t,s,t,s,...) of length m. We can then get from s to t by

s—-u—u —t,

where the first and third arrows are given by case (a) and the second is an
operation of type (II). This completes the proof of (2).

Turning now to (1), we must show that if s = (s1,...,84) is not re-
duced, then it can be shortened by M-operations. We argue by induction
on d. If the subword s’ := (sa,...,5s4) is not reduced, then we are done by

the induction hypothesis. So assume that s’ is reduced and let w’ = sg - - s4.
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Since I(syw’) # l(w') + 1, there is a reduced decomposition of w’ starting
with s1, say t' = (s1,t1,...,t4—2). By statement (2), which we have already
proved, we can transform s’ to t’ by M-operations; hence we can transform
s to (s1,81,t1,---,tqa—2) by M-operations. But this can then be shortened to
t:= (t1,...,t4—2) by an operation of type (I). O

Remark 2.34. It is immediate from the theorem that all reduced decomposi-
tions of a given element w € W involve the same generators. This was already
proved in Proposition 2.16, but the theorem probably gives a conceptually
clearer explanation of why it is true.

Note that the solution of the word problem in Theorem 2.33 gives a com-
plete description of the elements of W in terms of the Coxeter matrix. Conse-
quently, we have the following generalization of a result that we already knew
for finite reflection groups:

Corollary 2.35. W is determined up to isomorphism by its Coxeter matriz.
O

We can make this more precise, in a way that gives us new information
even for finite reflection groups:

Corollary 2.36. W admits the presentation
W= {(8; (e =1)

where there is one relation for each pair s,t with m(s,t) < co.

Proof. Let W be the abstract group defined by this presentation, and consider
the canonical surjection W — W. By Theorem 2.33, an element w in the
kernel can be represented by a word s that is reducible to the empty word by
M-operations. But M-operations do not change the element of W represented
by a word, so w = 1. O

We close by giving, as a sample application of Theorem 2.33, a lemma that
will be useful in the next subsection. Recall from Proposition 2.16 that S(w)
for w € W denotes the set of generators s € S that occur in some (every)
reduced decomposition of w.

Lemma 2.37. If w € W and s € S~ S(w) satisfy l(sws) < l(w) + 2, then s
commutes with all elements of S(w).

Proof. We have [(sw) = I(w) + 1 = l(ws) by Lemma 2.15. Therefore, in view
of the folding condition (Section 2.3.1), the hypothesis I(sws) < I(w) + 2 is
equivalent to the equation sw = ws. We now show by induction on [ := [(w)
that s commutes with all elements of S(w). We may assume [ > 1. Choose a
reduced decomposition w = s; - - - ;, and consider the equation
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§81-++8 = 81---88.

By Theorem 2.33, we can perform M-operations of type (II) to the word on
the left in order to convert it to the word on the right. One of these operations
must involve the initial s. Prior to applying this operation, we have a word
of the form st ---t; with w = t;---¢; and all t; € S\ {s}; so the operation
is possible only if m(s,t1) = 2. Thus s commutes with ¢, hence also with
tyw = to - -t;, and an application of the induction hypothesis completes the
proof. a

Exercises

2.38. Suppose that |S| = 3 and that the generators s, ¢, u satisfy m(s,t) > 2
and m(t,u) > 2. Show that the word utstu is reduced.

2.39. Let W be the reflection group of type Az [symmetric group on four
letters]. Find all reduced decompositions of the longest element wg, which is
5183525153S592.

2.40. Give an example to show that the hypothesis s ¢ S(w) in Lemma 2.37
cannot be replaced by the weaker hypothesis I(sw) = l(w) + 1 = l(ws).

2.41. Given w € W and s € S~\.S(w) with w™lsw € S, show that s commutes
with all elements of S(w).

2.42. Recall from the classification of irreducible finite reflection groups that
their Coxeter diagrams have a number of special properties, including the fol-
lowing: The edge labels are never greater than 5 if there are least 3 vertices;
the graph is a tree; it branches at at most one vertex, which is then neces-
sarily of degree 3; if it branches, there are no labeled edges (i.e., there are no
m(s,t) > 3); if it does not branch, there is at most one labeled edge. As we
mentioned in Remark 1.98, these facts are proved in the course of proving the
classification theorem. Show that they all follow from Tits’s solution of the
word problem.

*2.3.4 Counting Cosets

We continue to assume that (W, S) satisfies the deletion condition. We begin
with the following result of Deodhar [96, Proposition 4.2], who says that the
result was also known to Howlett.

Proposition 2.43. Assume that (W, S) is irreducible (i.e., its Cozeter dia-
gram is connected) and that W is infinite. If J is a proper subset of S, then
W has infinite index in W. O

The proof will use the following lemma:
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Lemma 2.44. Given s,t € S with m(s,t) > 2, let J := S~ {s} and K :=
I~ At} = S~ {s,t}. Suppose w is a right K-reduced element of Wy. Then ws
is (right) J-reduced.

Proof. Note first that [(ws) = I(w) + 1 by Lemma 2.15. We must show that
lwsr) = l(w)+ 2 for r € S~ {s}. If r #¢, then r € K and w is r-reduced.
Since w is also s-reduced, we have l(wsr) = l(w) + I(sr) = l(w) + 2 by
Proposition 2.20. Suppose now that r = ¢. Assuming, as we may, that {(w) > 0,
we can write w = vt where v is t-reduced. [Recall that w is a K-reduced
element of W, so every reduced decomposition of it ends in ¢.] Since v is also
s-reduced, Proposition 2.20 yields

l(wst) = l(vtst) = 1(v) +3 =1l(w) + 2,
as required. O

Proof of Proposition 2.43. We will give the proof under the assumption that
S is finite. See Exercise 2.47 below for the case of infinite S. We may assume
J =8~ {s} for some s € S, and we argue by induction on |S|. The result is
trivial if W is finite, so assume W} is infinite. Our task is to produce infinitely
many (right) J-reduced elements of J. Now (W, J) might be reducible, so
we cannot directly apply the induction hypothesis. But we can decompose
the Coxeter graph of (W;,J) into connected components with vertex sets
J1,Jo,. .., and at least one of these (say .Ji) must correspond to an infinite
group Wy, . So we can apply the induction hypothesis to the latter.

Choose t € J; with m(s,t) > 2; such a t exists by irreducibility of (W, S).
By induction, W, contains infinitely many (J; \ {t})-reduced elements w. To
complete the proof, observe that for each such w, the element ws is (right)
J-reduced: It is Jy-reduced by Lemma 2.44, and it is (J ~\ Jy)-reduced by
Lemma 2.15. a

We now generalize the proposition to double cosets. To the best of our
knowledge, this generalization has not previously appeared in the literature.

Proposition 2.45. Assume that (W, S) is irreducible, S is finite, and W is
infinite. If I and J are proper subsets of S, then W\W /W is infinite.

Remark 2.46. In contrast to the situation for ordinary cosets, one cannot
avoid the assumption that S is finite. A counterexample was given in Exer-
cise 2.31(c), and we briefly recall it here: The group W has infinitely many gen-
erators si, So, . . ., where m(s;, s;+1) = 3 and m(s;, s;) = 2if j > i+1; thus the
Coxeter diagram is an infinite path with unlabeled edges. Set J := S ~\ {s1}.
Then straightforward computations show that there are only two (J, J)-re-
duced elements, 1 and s, so |W;\W/W;| = 2. The conceptual explanation
is that W is a doubly transitive permutation group on the set N of natural
numbers, and W is the stabilizer of 1 € N. Then W/W) is infinite because
N is infinite, but |W;\W/W;| = 2 because W acts transitively on N\ {1}.
See Exercise 2.31 and its solution for more details.
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Proof of Proposition 2.45. We argue by induction on |S|. We may assume that
I=5~{s}and J =S~ {s} for some s', s € S. We may also assume, in view
of Proposition 2.43, that W; and W are both infinite. Our task is to show
that W contains infinitely many (I, J)-reduced elements.

Case I, s = s’. This is very similar to the proof of Proposition 2.43. As in
that proof, we can find J; C J and t € J; such that Wy := W, is infinite
and irreducible and m(s,t) > 2. By the induction hypothesis, W1 contains
infinitely many (K, K)-reduced elements w, where K := J; ~ {t}. We will
show that sws is (J, J)-reduced for each such w with I(w) > 1. By symmetry
it suffices to show that sws is right J-reduced, i.e., that [(swsr) = l(sws) + 1
for all r € J. Note first that ¢ € S(w), so

l(sws) = l(w) +2 (2.10)

by Lemma 2.37. [Recall that m(s,t) > 2, i.e., s does not commute with ¢.]
Consider now the following three possibilities for r.

(a) r € J~ Ji. Then I(swsr) = l(sws) + 1 by Lemma 2.15.

(b) 7 € K. Then sw is right r-reduced since {(wr) = l(w) + 1 and s ¢ Jy,
and it is right s-reduced by (2.10). We therefore have {(swsr) = [(sw) +(sr)
by Proposition 2.20; hence I(swsr) = I(sw) + 2 = [(sws) + 1.

(c) r = t. Note that we necessarily have w = tut with v € W; and
l(w) = I(u) + 2. (Recall that w is (K, K)-reduced and that [(w) > 1.) We
must show that [(stutst) = I(stuts) + 1. Observe that stu is right s-reduced
by Lemma 2.37 and is right t-reduced since (stu)t = sw and s ¢ J. Hence
Proposition 2.20 yields I(stutst) = I(stu) + l(tst) = l(stu) + 3 = l(stuts) + 1.

Case II, s # s'. Denote by J; the connected component of J = S\ {s} that
contains s’. Suppose Wy, is finite. Then there must exist another connected
component Jy of J such that W, is infinite. (Recall from the beginning of
the proof that W; and W, are infinite.) It follows that I’ := Jo U {s} is
connected, W7 is infinite, and I’ is contained in I = S~ {s'}. So if we denote
by I the connected component of I that contains s, then Wi, is infinite. We
may therefore interchange the roles of I and J if necessary and assume from
the beginning that W; := W, is infinite.

As in Case I, choose t € J; with m(s,t) > 2. Set K := J; ~ {t} and
H :=J; ~{s'}. (Possibly t = ¢’ and K = H.) The induction hypothesis gives
us infinitely many (H, K)-reduced elements w € Wi, and we again consider
only those w with I(w) > 1. Any such w must (being (H, K)-reduced) have
a “reduced decomposition” w = s'ut with v € W7y, where “reduced” means
that [(w) = I(u) + 2.

We claim that for each such w, the element ws is (I, J)-reduced. We show
first that [(rws) > l(ws) for all r € I = S~ {s’'}. This is clear for r € J~ J;. It
is also clear for r = s in view of Lemma 2.37, since ¢ € S(w) and m(s,t) > 2.
Finally, if r € H = J; \ {s'}, then I(rw) > w by the assumption on w, and
l(rws) > l(rw) since s ¢ Jy, so l(rws) = l(w) + 2 > l(ws).
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Next we show that I(wsr) > I(ws) for all r € J = S ~\ {s}. This is again
trivial if 7 is in J N\ Jy. For r € K = J; \ {t} we know that w is right r-reduced
as well as right s-reduced; hence l(wsr) = l(w) + 2 > I(ws). It remains to
consider the case r = t. In this case s'u is right t-reduced (since s'ut is a
reduced decomposition of w) and right s-reduced (since s'u € W7y). Recalling
again that m(s,t) > 2, we conclude that [(wst) = [(s'utst) = I(s'u) + 3 =
l(w) +2 > l(ws). a

Exercises
2.47. Prove Proposition 2.43 if S is infinite.

2.48. What goes wrong if we try to prove Proposition 2.45 for infinite S by
imitating the solution to Exercise 2.477

2.4 Coxeter Groups

We return now to an arbitrary (W, .S), where W is a group and S is a set of
generators of W of order 2. We have seen (Corollary 2.36) that if (W, S) sat-
isfies (D) then it admits a presentation in which the relations simply specify
the orders of the pairwise products of the generators. Tits [240] initiated the
systematic study of groups with such a presentation. He called them Cozeter
groups, since Coxeter [85] had earlier studied finite groups with a presenta-
tion of this type. We will therefore call the following condition on (W, S) the
Cozxeter condition:

(C) W admits the presentation

(85 (styme =1,

where m(s,t) is the order of st and there is one relation for each pair s,t with
m(s,t) < oo.

We have now introduced five conditions on (W,S), and we have shown
that they are related as follows:

(A) = (D) <= (E) < (F) = (C).

On the other hand, a Coxeter presentation as in (C) is precisely what we used
in Section 2.2.3 to give a proof by combinatorial group theory that PGLy(Z)
satisfies (A). As we noted in Remark 2.8, this proof goes through with no
change to show, in general, that (C) implies (A). Thus we have come full
circle:

Theorem 2.49. The conditions (A), (C), (D), (E), and (F) are equivalent.
O
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It now seems safe to conclude that we have found the right class of groups
that deserve to be called “reflection groups.” We follow Tits’s terminology,
however, and call them Coxeter groups:

Definition 2.50. We say that W is a Cozeter group (or, more precisely, that
the pair (W,S) is a Cozeter system) if the equivalent conditions of Theo-
rem 2.49 are satisfied. The matrix M = (m(s,t)) will be called the Cozeter
matriz of (W, S), and the cardinality |S| will be called the rank of (W, S).

Exercise 2.51. Let (W, S) be a Coxeter system, and let W; be a standard
subgroup (J C S). Show that (W, J) is a Coxeter system.

2.5 The Canonical Linear Representation

Starting in this section, and throughout the rest of the book, we assume that
the generating set S is finite unless we explicitly state that S might be
infinite. The finite case is the most important one for the theory of buildings,
and many of the arguments are simpler in that case. Some of what we do,
however, would in fact generalize to the case of infinite S.

We emphasized in our discussion of examples in Section 2.2 that the Cox-
eter groups in those examples all admit a canonical linear representation that
can be described in terms of the Coxeter matrix. And of course, this linear
representation was there from the start in the case of finite reflection groups
(Chapter 1). We show now that such a representation exists for every Coxeter
group. As a byproduct of the discussion we will obtain an answer to the fol-
lowing natural question, which may have already occurred to the reader when
we formulated the Coxeter condition (C): Which matrices M can occur as the
Coxeter matrix of a Coxeter group?

Let M = (m(s,t)), e be a matrix with m(s,t) € Z U {oo}. For the
moment, S is just an index set, i.e., there is no group W yet.

Definition 2.52. We call M a Coxeter matriz if
m(s,s) =1 and 2<m(s,t) =ml(t,s) <oofors#t.
We denote by W)y, the group defined by the presentation
Wi = <S :(st)™s) = 1> ,

where, as usual, the relation occurs only if m(s,t) < oco.

Note that the image of S in W := W)y, consists of elements of order 2
(i.e., s # 1 in W for each s € S). This follows from the fact that there is a
homomorphism W — {£1} with s — —1 for each s € S. But it is not obvious
that S injects into W or that st has order precisely m(s,t). [It is conceivable,
a priori, that the order of st in W is a proper divisor of m(s,t).] So we cannot
immediately assert that W is a Coxeter group with Coxeter matrix M. But
we will prove this to be the case using the canonical linear representation that
we are about to construct.



2.5 The Canonical Linear Representation 93

2.5.1 Construction of the Representation

As in Section 1.5.5, we introduce the vector space V := R® of S-tuples, with
its standard basis (es)scs. Let B be the symmetric bilinear form on V such
that

B(es,er) = —cos m(i; g
We wish to make W act on V as a “reflection group,” where the bilinear
form B plays the role of the inner product that was available in Chapter 1.
Note first that if « € V is any vector such that B(a,«) # 0, then we have
a decomposition V = Ra @ a*, where at := {x € V | B(a,z) = 0}. There is
therefore a linear reflection o on V that sends « to —a and is the identity
on a™. It is clear from this description that o is orthogonal with respect to B,
ie., B(o(z),0(y)) = B(z,y) for all z,y € V. Moreover, ¢ is given by the
familiar formula from Chapter 1: Assuming, for simplicity, that B(«, a) = 1,
we have

o(x) =2z —2B(a,2)a . (2.11)

We now try to make W act on V so that a generator s € S acts as the
reflection o4 with respect to es. In other words, we want

s(x) = 0s(x) =« — 2B(es, v)es (2.12)
for s € S and x € V. To get a well-defined action, we must show that
(O'SO't)m = ldV

if m :=m(s,t) < oo. This is clear if s = ¢, so assume s # t.

Note that the bilinear form B is positive definite on the subspace V; :=
Res @ Rey. So Vi can be viewed as a Euclidean plane, and o, and o in-
duce orthogonal reflections on that plane. Since the angle between e, and e;
is m — m/m, the angle between the fixed lines of o5 and oy is w/m. Using
standard Euclidean geometry, we conclude that the product os0, acts on V
as a rotation of order m. Moreover, o, and oy act trivially on the orthogo-
nal complement Vy := V3 + with respect to B, and we have a decomposition
V =V; &V because B is nondegenerate on V;. Hence o40; has order m as
an automorphism of V. This proves that we do in fact get the desired action
of W on V and that st has order m(s,t) whenever the latter is finite.

Given s,t with m(s,t) = oo, it is still true that o5 and oy restricted to
V1 := Res ® Re; generate a faithful linear representation of D, which is the
same as the one we discussed in Section 2.2.2 (where the vector space with
basis e, e; was called V*), so 050, has infinite order; hence st has infinite
order. [Alternatively, one can simply write out the matrices of os and oy
on V7 and check that the product has 1 as an eigenvalue of multiplicity two;
since the product is nontrivial, this implies that it has infinite order.]

The discussion in the previous two paragraphs shows that the various o,
are distinct from one another, so S injects into W. We may therefore view S
as a subset of W, and we have proven the following result:
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Theorem 2.53. The elements of S are distinct and of order 2 in Wy, and st
has order precisely m(s,t) in Was. Hence (W, S) is a Cozeter system with
Coxeter matriz M. O

It is now clear that a Coxeter matrix in the sense of Definition 2.52 is the
same as what we called a Coxeter matrix in Section 2.4. Moreover, the action
of W := Wy on V provides a canonical linear representation for any Coxeter
group. It was first introduced by Tits [240]. Our next goal is to show that it
is faithful, i.e., that W injects into the group of linear automorphisms of V;
thus every Coxeter group can be viewed as a linear reflection group.

Remark 2.54. It is sometimes convenient to write the formula (2.12) for the
action of W on V in a way that resembles a familiar formula from the theory
of root systems (see equation (B.3) in Appendix B). For s € S, let eY € V*
be given by

(eY,x) := 2B(es, 1)

for x € V, where, as in Section 2.2.2, we use angle brackets for the natural
pairing between V' and V*. Then (2.12) becomes
s(x) =2 — (e),x)e, . (2.13)

s

Exercises

2.55. Let M be a matrix as at the beginning of this section, but suppose we
drop the symmetry assumption m(s,t) = m(t, s).

(a) If M is not symmetric, show that there are elements s,t € S such that
the order of the image of st is not m(s,t). Where does the proof of
Theorem 2.53 break down?

(b) Let S’ be the image of S in W = Wy,. Show that (W, S”) is still a Coxeter
system.

(c) Give a procedure for determining the set S’ and the Coxeter matrix M’
of (W, 5").

2.56. This is a generalization of Exercise 1.101. Let (W, S) be an irreducible
Coxeter system.

(a) Show that every proper W-invariant subspace of V' is contained in the
radical of B, the latter being {x € V' | B(z,y) = 0 for all y € V'}. In par-
ticular, the canonical linear representation is irreducible if B is non-
degenerate.

(b) Show that the only linear endomorphisms of V' that commute with all
elements of W are the scalar-multiplication operators.
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2.5.2 The Dual Representation

The proof that the canonical linear representation is faithful will be based
on chamber geometry. The reader who has worked through the discussion
of D, in Section 2.2.2 will not be surprised that the natural place to look for
chambers is in the dual space V* of V. Note first that the action of W on V
induces an action of W on V*. It is defined by

<w€a $> = <§7 w71x>

or, equivalently,
(wg, wr) = (€, x)

forwe W, £ € V* and x € V. Using this definition and equation (2.13), one
can check that the action of a generator s € S is given by

s(§) =&~ (& es)e) (2.14)

for £ € V*. In particular, s acts on V* as a linear reflection whose fixed
hyperplane Hy is given by (—, es) = 0. Let C' be the simplicial cone in V*
defined by the inequalities (—,es) > 0 for s € S. We call C the fundamental
chamber. Its walls are the hyperplanes Hy.

Remark 2.57. The fact that the vectors es form a basis for V', whereas the e
do not in general form a basis for V*, explains why V* is the natural place to
look for chambers rather than V.

We claim now that
wCNC=0forl#AweW. (2.15)

The idea behind the proof of (2.15) is that if we choose s € S such that
l(sw) < I(w), then Hy ought to separate C' from wC' (see Section 3.3.3). This
motivates the following lemma, which implies (2.15):

Lemma 2.58. Fiz s € S and let Uy(s) and U_(s) be the open half-spaces
in V* defined, respectively, by (—,es) > 0 and (—,es) < 0. Then for any
w e W we have
e {U+(s) if I(sw) = L(w) + 1,
U_(s) ifl(sw)=1(w)— 1.
Proof. We argue by induction on [(w). If (sw) < l(w), then we may apply the
induction hypothesis to the element sw to get swC C U, (s); multiplying by s,
we obtain wC C sU, (s) = U_(s), as required. Suppose now that I(sw) > [(w).
We may assume w # 1, so there is a t € S (necessarily different from s) such
that I(tw) < l(w). Choose a reduced decomposition of w starting with as

long a subword as possible involving just s and ¢. This yields a factorization
w = ww” with w' € W' = (s,t), l(w) = () + (W), I(sw") > l(w"),
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and [(tw”) > l(w”). By the induction hypothesis, we have w”’C C C" :=
Ui (s)NU4(t). Now C is essentially the fundamental chamber for the dual of
the canonical representation of W’. More precisely, the dual of the canonical
representation of W' is a 2-dimensional quotient of V*, and C’ is the inverse
image of the fundamental chamber. (See Exercise 2.60 below.) But we have
studied the canonical representation of W’ and its dual in detail, whether W'
is finite or infinite, and we know that its chamber geometry behaves in the
expected way. [See Proposition 1.118 for the finite case and Lemma 2.5 for the
infinite case.] In particular, since I(sw’) > I(w’), it follows that w'C’ C U4 (s);
hence wC = w'w”"C Cw'C’" C U, (s). ]

The following result is an immediate consequence of (2.15):

Theorem 2.59. The action of W on 'V is faithful. Moreover, W is a discrete
subgroup of the topological group GL(V') of linear automorphisms of V. O

Exercise 2.60. Let W; be a standard subgroup (J C S). Then we have
a canonical linear representation of W; on a vector space V; with ba-
sis (es)ses. Show that there is a Wj-equivariant surjection V* — V;* with
kernel (1, ; Hs, which is the fixed-point set of W in V*. Informally, then, we
can say that the action of W; on V* is essentially the dual of the canonical
linear representation of W .

2.5.3 Roots, Walls, and Chambers

Definition 2.61. The vectors wes (w € W, s € S) in V will be called roots,
the hyperplanes wH, (w € W, s € S) in V* walls, and the simplicial cones wC'
(w € W) in V* chambers. We denote by @ the set of all roots, by H the set
of all walls, and by C the set of all chambers.

We emphasize once again that the roots are in V', while the chambers and
walls are in V*. Note that in view of (2.15), W acts simply transitively on C.

Let T be the set of reflections in W as defined in Section 2.1. Then the
elements of T" act on V' as orthogonal reflections with respect to the bilinear
form B. More precisely, for any ¢ € T there are two unit vectors +a (with
respect to B) in the (—1)-eigenspace of ¢ acting on V, and the action of ¢ can
then be written as in equation (2.11). There are also analogues of equations
(2.13) and (2.14). We will write ¢ = s, when t is associated to £« in this way.
Note that we have £a € @. Moreover, one can easily check the equation

WS WL = Sya
forw e W and a € .
It is clear from this discussion that there is a bijection between T and the

set of pairs +a of opposite roots, under which +a corresponds to the reflection
Sq € T. We therefore obtain, by duality, a bijection between T and H, which
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associates to ¢ € T the fixed hyperplane of ¢ acting on V*. To verify this,
observe that if t = s,, the fixed hyperplane of ¢ in V* is given by (—, a) = 0.
[This follows, for instance, from the analogue of (2.14) with e replaced by a.]

Turning now to chambers and walls, Lemma 2.58 implies that every cham-
ber D = wC' lies on one side of each wall; hence D has a well-defined sign
sequence

U(D) = (UH(D))Heﬁ

with oy (D) € {+, —}; here we could arbitrarily choose the positive and neg-
ative sides of H, but we follow the usual convention that the positive side is
the one containing C'. A chamber D is clearly determined by its sign sequence,
since D is a simplicial cone whose walls form a subset of H. Even though our
sign sequences are infinite in general, we claim that the sign sequences of any
two chambers differ in only finitely many places. The following lemma is the
key step in the proof of this:

Lemma 2.62. For any s € S, Hg is the only wall separating C' from sC.

Proof. We will use the theory of (finite) hyperplane arrangements developed
in Section 1.4. Let Hy C H be any finite subset containing the walls of C'
and sC. Then C and sC are Hgp-chambers with a common wall Hy, = sHj.
Moreover, if A; is the panel of C' with support Hg, then A is fixed by s and
hence is also the panel of sC' with support H,. Thus C' and sC' are adjacent
in the sense of Section 1.4.9 (applied to Hyp), and Hj is the unique element
of Hy that separates them. Since H could have been chosen to contain any
given wall, the lemma follows. O

Consider now an arbitrary chamber wC (w € W), and choose a decompo-
sition w = 81+ -+ 8, (8; €.5). Since s1 ---s;_1C and s - - - s;C are separated by
only one wall, the sign sequences of C' and wC' = s -- - s5,C differ in at most
n positions. Using the W-action, we obtain the result claimed above, which
we record for future reference:

Lemma 2.63. Any two chambers are separated by only finitely many walls.
(]

Remark 2.64. We began our development of the theory of Coxeter groups in
Section 2.1 by introducing the set T x {£1} and suggesting that its elements
should be thought of intuitively as roots. It is now clear that this abstract set
can be identified with the set of roots @ introduced above. One can in fact de-
velop the entire theory of Coxeter groups by starting with the canonical linear
representation and using its action on @ systematically. This is the approach
taken in the book by Humphreys [133], based on ideas of Deodhar [96].

2.5.4 Finite Coxeter Groups

We show here that if the Coxeter group W is finite, then it is a finite reflection
group in the sense of Chapter 1. Roughly speaking, then, finite Coxeter groups
are exactly the same thing as finite reflection groups.
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Theorem 2.65. If W is finite, then the bilinear form B is positive definite
and W is a finite reflection group acting on V , with S as the set of reflections
with respect to the chamber defined by B(es,—) > 0 for all s € S.

Proof. Let V7 = V*, and let’s temporarily forget that V; is the dual of V.
By Theorem 2.59, W can be identified with a finite group of linear transfor-
mations of V; generated by linear reflections. We can make them orthogonal
reflections by putting a W-invariant inner product on V;. To this end, start

with an arbitrary inner product (—,—) on Vi, and construct a W-invariant
inner product (—, —) by “averaging”:
(x,y) = Z (wz, wy) .
weWw

For each s € S, the (41)-eigenspaces of s are orthogonal to one another
with respect to this W-invariant inner product, so s indeed acts on V; as an
orthogonal reflection. Thus (W, V7) is a finite reflection group in the sense
of Chapter 1. The set H defined in Definition 2.61 satisfies the conditions of
Section 1.5, so it is the set of walls of (W, V7). Our fundamental chamber C
is therefore a chamber for (W, V7), and S is a set of fundamental reflections.

Let f, be the unit vector in H,- pointing to the side of H, contain-
ing C. Then we know from Section 1.5.5 that the usual formulas hold:
s(x) = & — 2(fs,2)fs for & € V4, and (fs, fi) = —cos(7/m(s,t)). Thus V7,
with its W-action and inner product, is isomorphic to V', with its W-action
and bilinear form B. Everything we know about (W,V;) can now be trans-
ported to (W, V). O

Remarks 2.66. (a) Combining Theorem 2.65 with the classification of finite
reflection groups (Section 1.3), we recover Coxeter’s list [85] of the finite Cox-
eter groups.

(b) We can now apply to arbitrary finite Coxeter groups all of the results of
Chapter 1. For example, the result about the normalizer of S (Corollary 1.91)
is valid for every finite Coxeter group.

Next, we wish to show that the converse of the first assertion of Theo-
rem 2.65 is also true.

Proposition 2.67. If B is positive definite, then W is finite.

Proof. W is a subgroup of the orthogonal group consisting of all linear trans-
formations of V' that leave B invariant. Since B is positive definite, this or-
thogonal group is compact. In view of Theorem 2.59, W is a discrete subgroup
of a compact group; hence it is finite. a

Combining Theorem 2.65, Proposition 2.67, and the results of Chapter 1,
we obtain the following:
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Corollary 2.68. The following conditions on a Cozeter system (W,S) are
equivalent:

(i) W is finite.
(ii) W can be realized as a finite reflection group, with S as the set of reflec-
tions with respect to the walls of a fundamental chamber.
(iii) The canonical bilinear form B on V := R¥ is positive definite. g

Finally, we add several more useful criteria for a Coxeter group to be finite.
Recall that C' is the fundamental chamber, C is the set of all chambers, H is
the set of walls, T is the set of reflections, and @ is the set of roots.

Proposition 2.69. The following conditions on a Coxeter system (W, S) are
equivalent:

(i) W is finite.
(ii) —C is a chamber.
(iil) H is finite.

(iv) T is finite.
v) @ is finite.
(vi) C is finite.

Proof. 1t is clear from the discussion in Section 2.5.3 that conditions (iii), (iv),
and (v) are all equivalent. So it suffices to show

(i) = (i) = (ii) = (vi) = ().

If W is finite, then it is a finite reflection group, so —C' is a chamber. Hence
(i) = (ii). Next, (ii) = (iii) by Lemma 2.63 since every wall separates
—C from C. Finally, (iii) = (vi) trivially, and (vi) = (i) because W acts
simply transitively on C. O

2.5.5 Coxeter Groups and Geometry

In this short subsection we make some remarks about three classes of Coxeter
groups that are related to classical geometry.

Definition 2.70. We will say that a Coxeter system (W, .S) of rank n is spher-
ical, of dimension n—1, if it satisfies the equivalent conditions of Corollary 2.68.

The motivation for this definition should be clear from Chapter 1. The
examples in Section 2.2 were designed to suggest that there are also reasonable
notions of FEuclidean and hyperbolic Coxeter system. We will study these in
Chapter 10, but by way of preview, we state some facts that have already been
illustrated in the examples. First, we introduce some standard terminology.

Definition 2.71. The bilinear form B and the Coxeter system (W, .S) are said
to be of positive type if B is positive semidefinite, i.e., if B(z,x) > 0 for all
zeV.
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Note that we may have B(z,z) = 0 for some x # 0; this holds if and only if
B is degenerate (Exercise 2.72).

Now suppose that (W, S) is an irreducible Coxeter system of rank n := |S|.
Then:

(1) (W,S) is spherical (of dimension n—1) if and only if B is positive definite.

(2) (W, S) is Euclidean (of dimension n — 1) if and only if B is of positive
type but degenerate.

(3) (W, S) is hyperbolic (of dimension n — 1) if B is nondegenerate of signa-
ture (n — 1,1) and B(x,z) < 0 for all z in the fundamental chamber C.

We have already proven (1), and we will return to (2) and (3) in Chapter 10,
where in particular, we will define the terms “Euclidean Coxeter system”
and “hyperbolic Coxeter system.” But statement (3) needs some explanation
before we move on.

Recall first that the signature of a nondegenerate bilinear form on a finite-
dimensional real vector is the pair of integers (p, q) such that when the form
is diagonalized it has p positive entries and ¢ negative entries on the diagonal.
Secondly, since B is nondegenerate in (3), we can use it to identify V with its
dual. So the fundamental chamber C' that we defined in V* can be identified
with the chamber (still called C) in V' defined by B(es, —) > 0 for all s € S.
Thus it makes sense to talk about the value of B(x,x) for € C. Thirdly,
note that there is an “if” but not an “only if” in (3). The reason is that the
condition in (3) characterizes the special class of hyperbolic Coxeter groups
that act on hyperbolic space with a simplex as fundamental domain. But it
turns out that the fundamental domain for a hyperbolic reflection group can
be a more complicated polyhedron. We will explain this further in Section 10.3.

Exercise 2.72. Let B be a positive semidefinite symmetric bilinear form on
a real vector space. If B(x,z) = 0 for some x, show that z is in the radical
of B, i.e., B(z,y) =0 for all y.

2.5.6 Applications of the Canonical Linear Representation

Returning to the general case, we first use the canonical linear representation
to calculate the normalizer of the generating set S. We already know what
this is for a finite Coxeter group (Remark 2.66(b)), so we will know it for every
Coxeter group if we treat the infinite irreducible case. In the finite case we
gave two proofs, one algebraic and one geometric. We are now in a position to
give an analogue of the algebraic proof; in the next chapter we will see that
the geometric proof also generalizes (see Exercise 3.122).

Proposition 2.73. If (W, S) is an irreducible Cozeter system with W infinite,
then the normalizer of S is trivial. In particular, the center of W is trivial.

(This result first appeared in print in [44, Section V.4, Exercise 3|; see also
[96, Proposition 4.1].)
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Proof. The proof is almost the same as the algebraic proof of Corollary 1.91,
except that the bilinear form B(—, —) replaces the inner product (—, —), and
one has to work in both V', which contains the set @ of roots, and V*, which
contains the chambers. Here are the details. Suppose w € W normalizes S.
For each s € S, s’ := wsw™! € T is the reflection corresponding to the
roots +weg € @. Hence wey, = fey . Irreducibility now implies, exactly as in
the proof of Corollary 1.91, that the ambiguous sign is independent of s. So
either wey = ey for all s € S or wey; = —ey for all s € S. Considering now
the action of w on V*, we conclude that either wC = C or wC = —C'. The
second case is impossible by Proposition 2.69, so wC = C' and hence w = 1
by simple transitivity. a

As a second application, we prove the following result of Niblo and Reeves
(cf. [180, Lemma 3)):

Proposition 2.74. If W is infinite, then W contains two reflections t,t’
whose product tt' has infinite order.

Remark 2.75. Our standing assumption that S is finite is crucial here. The
proposition is obviously false, for example, if S is infinite but W} is finite for
every finite J C S.

The proof will make use of two lemmas. The first will be proved later, but
we state it here for ease of reference.

Lemma 2.76. Let W/ < W be a subgroup generated by two reflections. If W'
is finite, then W' is contained in a finite parabolic subgroup.

This is a special case of Proposition 2.87, which we will prove in the next
section using the Tits cone. Alternatively, there is a direct combinatorial proof
of this special case that will arise naturally in our study of Coxeter complexes
in the next chapter; see Corollary 3.167.

The next lemma is the crucial one. The “if” part of the first assertion can
be found in [49, Proposition 1.4], where it is attributed to Dyer [99].

Lemma 2.77. Let o and (3 be roots with o # £3, and let s and sg be the cor-
responding reflections. Then sqsg has finite order if and only if |B(«, B)| < 1.
Moreover, the set of real numbers

E = {B(,8) | 0,8 € 8, |B(a, §)| < 1}
s finite.

Proof. Let W' be the dihedral group generated by s, and sg; it is finite if and
only if s, s has finite order. Suppose first that |B(«, 8)| < 1, and let V' be the
2-dimensional subspace of V' generated by a and . The hypothesis implies
that the form B is positive definite on V’. In particular, it is nondegenerate,
so we have an orthogonal decomposition V. = V' @& V" where V" is the
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orthgonal complement of V’ with respect to B. The dihedral group W’ acts
trivially on V", so we may view it as a subgroup of the orthogonal group
acting on V’. Since W’ is discrete and the orthgonal group is compact, it
follows that W' is finite.

Conversely, suppose W is finite. By Lemma 2.76, we then have wW’w=! <
Wy for some w € W and some J C S such that W is finite. Replacing «
and 3 by wa and w3, we may assume that W’ < W;. By Corollary 2.68, B
is positive definite on the subspace V; spanned by the es with s € J, so the
inequality |B(a,3)| < 1 will follow if we can show that « and § are in V.
To this end, note that, as above, we have V = V; @ (V;)*, and W acts
trivially on (V;)®. So V; must contain the (—1)-eigenspaces of s, and sg;
hence «, 8 € V.

Finally, we prove the finiteness of E. By the arguments above, E is the
set of numbers B(a, ) (with a,3 € &, a # £0) such that s, and sg are
contained in a finite standard subgroup W ;. Now there are only finitely many
possibilities for J, and for each J, there are only finitely many possibilities
for the pair s,,s3 € Wj. Since a root « is determined up to sign by the
reflection s, the finiteness of E follows. O

Proof of Proposition 2.74. With E as in the lemma, set N := (| E|+1)%. We
claim that any subset of 7" with more than N elements must contain two reflec-
tions whose product has infinite order. Since T is infinite by Proposition 2.69,
this implies the proposition.

In view of Lemma 2.77, an equivalent formulation of the claim is that any
set ¥ C @ with more than N elements and with ¥ N —¥ = () must contain
two distinct roots a, 3 such that |B(«, §)| > 1. Suppose, to the contrary, that
|B(a, B)] < 1 for all o, € ¥ with a # . Let ¥/ C ¥ be a basis for the
subspace V' of V' spanned by ¥ (so ¥’ has at most |S| elements). For any
o € ¥ there are at most N possibilities for the sequence (B(a, fy))v s SinCe
each component is either 1 or is in E. Since [¥| > N, there must exist two
distinct elements «, 3 € ¥ such that B(a, —) = B(, —) as linear functions
on V’. But this yields the contradiction

1=B(a,a)=B(f,a)<1. O

Exercise 2.78. Give an alternative proof that the center of an infinite irre-
ducible Coxeter group is trivial using the method of Exercise 1.102.

*2.6 The Tits Cone

We continue to assume that (W, S) is an arbitrary Coxeter system with S
finite. In Section 2.5 we constructed a representation of W on the vector
space V = RS, We introduced a set C of chambers in V*, determined by a set H
of walls. Here we carry the chamber geometry further and show that a great
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deal of what we did in Chapter 1 for finite reflection groups extends to general
Coxeter groups. The main results first appeared in an unpublished paper of
Tits [240]. Published accounts later appeared in Bourbaki [44], Vinberg [270],
and Humphreys [133]. We have marked this subsection as optional because,
while it contains an extremely useful tool for the study of Coxeter groups, it
is not really needed in the rest of this book.

2.6.1 Cell Decomposition

We assume here that the reader is familiar with the elementary geometry of
polyhedral sets defined by finitely many linear equalities and inequalities, as
developed in Section 1.4. In particular, we will make use of the fact that such
a set has well-defined faces. These can be determined using a collection of
defining equalities and inequalities as in Definition 1.20, and they can also be
characterized intrinsically (Proposition 1.27).

We apply this first to the fundamental chamber C, which is a simplicial
cone. It has one face A for each subset J C S, defined by (—,es) =0for s € J
and (—,es) >0 for s € S~ J. We use these faces and the W-action to define
the cells that will be of interest to us.

Definition 2.79. The transforms wA (w € W, A < C) will be called cells.
The Tits cone X is defined to be the union of all the cells. Equivalently,

X = Uwa.

weW

Note that every cell is a polyhedral set of the sort discussed above, defined by
finitely many linear equalities and inequalities.

Theorem 2.80. The cone X is convezr. For any x,y € X, the line segment
[x,y] crosses only finitely many walls and is contained in a finite union of
cells. Moreover:

(1) C is a strict fundamental domain for the action of W on X.

(2) The stabilizer of any x € C is the standard subgroup of W generated by
Sy i={s€S|sx=u}.

(3) For each cell A and wall H, A is contained either in H or in one of the
open half-spaces determined by H.

Proof. To prove the first part of the theorem, we may assume z € C and
y € wC for some w € W. Then [z,y] crosses only finitely many walls by
Lemma 2.63, since any wall that it crosses separates C' from wC. We will
prove by induction on I(w) that [z,y] is contained in a finite union of cells
(and hence, in particular, it is contained in X). Let z be the point such that
[z, 2] = C N [x,y]; see Figure 2.6. Then [, 2] is contained in the union of the
faces of C, so it is enough to show that [z,y] is contained in a finite union of
cells. We may assume y # z. For each s € S, we have z € U, (s) or z € Hg, and
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C y € wC

Fig. 2.6. Proof of convexity.

there must be at least one s with z € H, and y € U_(s); otherwise, we could
move a positive distance from z toward y without leaving C. Lemma 2.58 now
implies that w = sw’ with I(w’) = I(w) — 1, and then [z,y] = s[z, sy] with
sy € w'C, so we are done by the induction hypothesis.

We now proceed with (1)—(3). For (1) and (2) we must show that if wz =y
with 2,y € C, then = y and w € (S, ). We argue by induction on [(w), which
may be assumed > 0. Write w = sw’ with I[(w) = I(w’) + 1. Then w'z = sy.
The left side is in Uy (s) by Lemma 2.58, and the right side is in U_(s). So
w'z = sy € Hg, and hence w'x =y € Hy. We now have z = y and w’ € (S,)
by the induction hypothesis, and finally w = sw’ € (S;) because s € S, = S;.

(3) We may assume A < C' and H = wH,. We know that A is contained
in at least one of the two closed half-spaces bounded by H, since C is in
one of the open half-spaces. So we must show that if A meets H then A is
contained in H. In other words, if ¢ is the reflection wsw ™! whose fixed-point
set is H, we must show that if tx = x for some x € A then tx = z for all
x € A. This follows immediately from (2), since S, corresponds to the walls
of C' containing z, which are the same as the walls of C' containing A. O

It follows from (3) that every cell A has a well-defined sign sequence o (A),
generalizing the sign sequences for chambers, where now the possibility
or(A) = 0 is allowed. Moreover, A is defined by the equalities and inequal-
ities corresponding to the signs. [It suffices to check this when A is a face of
the fundamental chamber, in which case the result is trivial.] In particular,
distinct cells are disjoint. It follows easily that the face relation, which makes
sense a priori because each cell is defined by finitely many linear equalities
and inequalities, has the usual interpretation:

B<A < BCA < o(B)<o(A),
where the ordering on sign sequences is the same as in Definition 1.20.

Remarks 2.81. (a) Since the cells are disjoint, the statement that every
closed line segment in X is contained in only finitely many cells can be
strengthened: Every closed line segment meets only finitely many cells.

(b) Even though H is infinite, it still determines a partition of V* into sets
determined by sign sequences, exactly as in Section 1.4. For lack of a better



2.6 The Tits Cone 105

name, we call these sets H-cells. What we have just shown, then, is that the
cells of the Tits cone are in fact H-cells. One must be careful in what follows
to distinguish cells as in Definition 2.79 from the more general H-cells.

(c¢) Although each cell of the Tits cone is determined by finitely many of the
hyperplanes in H, this is not necessarily true of arbitrary H-cells. The reader
might find it instructive to find all the H-cells if W is the infinite dihedral
group (Figure 2.2).

We can now carry the theory further.

Proposition 2.82.

(1) Given cells A and B, there is a (unique) cell AB such that
on(A) if ou(A) £0,
O'H(B) ZfJH(A) =0.

For any x € A and y € B, we have (1 —¢€)x+ey € AB for all sufficiently

smalle > 0. The product (A, B) — AB makes the set of cells a semigroup.
(2) X is the entire space V* if and only if W is finite.

on(AB) = { (2.16)

Proof. (1) This is proved as in Section 1.4.6, the essential point being that a
line segment in X crosses only finitely many walls.

(2) If W is finite then we saw in the previous section that W can be
identified with a finite reflection group acting on V*, so X = JwC = V* by
Chapter 1. Conversely, suppose X = V*. Then —C' is contained in X. Since
—C is obviously an H-cell, it follows that —C'is a cell of X, hence a chamber
of X, so W is finite by Proposition 2.69. a

Remark 2.83. Using the fact that the chambers are simplicial cones, one can
show as in Section 1.5.8 that the poset X of cells is a simplicial complex, whose
vertices are the cells that are rays. Moreover, one can easily check, as in Sec-
tion 1.5.9, that this simplicial complex is isomorphic to the poset X'(W, S) of
standard cosets, ordered by reverse inclusion. This simplicial complex, called
the Coxeter complex associated to (W, S), will be the main object of study in
the next chapter.

2.6.2 The Finite Subgroups of W

As an application of the Tits cone, we will use it to analyze the finite subgroups
of W. As above, let X denote the set of cells in X. Fix A € X, and let H4
be the set of walls containing A. Then H 4 determines a partition of V* into
‘H a-cells. This is coarser than the partition into H-cells, i.e., every H 4-cell is
a union of H-cells. As in Exercise 1.45, we can prove the following:

Lemma 2.84. Let X> 4 be the set of cells of X having A as a face, and let
X4 be the set of Ha-cells that meet X. For any cell B € X> 4, let f(B) be
the Ha-cell containing B. Then f: X> a4 — X4 is a bijection.
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Proof. On the level of sign sequences, f just picks out the components of o(B)
corresponding to the hyperplanes in H 4. It is 1-1 because the remaining com-
ponents of o(B) are the same as those of o(A). To prove that f is surjective,
start with an H s-cell B’ that meets X, choose a cell B of X contained in B’,
and form the product AB. Then a consideration of sign sequences shows that
f(AB)=DB'. O

Lemma 2.85. Let W4 be the stabilizer of A. Then Wy is finite if and only
if Ha is finite.

Proof. If W4 is finite, then it contains only finitely many reflections, so H4
is finite. Conversely, if H 4 is finite, then there are only finitely many Ha-
cells, and hence X4 is finite. Lemma 2.84 now implies that X'> 4 contains only
finitely many chambers. So W, is finite, since it acts simply transitively on
those chambers. [Given chambers D, E > A, we know that there is a unique
w € W such that wD = E. Then wA and A are W-equivalent faces of FE;
hence wA = A by Theorem 2.80.] O

Lemma 2.86. Let X be the set of points x € X whose stabilizer W, is
finite. Given x € Xy and y € X with x # y, the half-open line segment [x,y)
is contained in Xy. In particular, Xy is convez.

Proof. In view of Lemma 2.85, X consists of the points € X such that
is contained in only finitely many walls. The result now follows from the fact
that [z, y] crosses only finitely many walls. O

We can now prove the main result of this subsection.

Proposition 2.87. Fvery finite subgroup of W is contained in a finite para-
bolic subgroup.

Proof. Note that X is W-invariant and that by Theorem 2.80, the stabilizers
W, for x € X are precisely the finite parabolic subgroups of W. So our task
is to show that every finite subgroup W’ of W fixes a point of X ;. The latter
being convex by Lemma 2.86, we can prove this by averaging: Start with an
arbitrary x € Xy, and then )y, wx is a point of X fixed by W’. O

Remark 2.88. See Bourbaki [44, Section V.4, Exercise 2(d)] or Brink and
Howlett [49, Proposition 1.3] for other proofs of the proposition.

Exercises

2.89. Let A be a cell and W, its stabilizer. If W, is finite, show that every
‘H 4-cell meets X, so the map f of Lemma 2.84 is a bijection from X'> 4 to the
set of all H 4-cells.

2.90. (a) Show that X is open in V* and hence is the interior of X in V*.

(b) Show that the action of W on X is proper. Since the stabilizers W, for
x € Xy are finite by definition, the content of this is that every x € X
has a W-invariant neighborhood U such that wU NU = () if w ¢ W,.
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2.6.3 The Shape of X

Suppose (W, S) is irreducible. If W is neither spherical nor Euclidean, then a
result of Vinberg [270, p. 1112, Lemma 15] says that the Tits cone X is strictly
convex, i.e., its closure does not contain any lines through the origin. (This
is obviously false in the spherical case. It is also false in the Euclidean case,
where the closure of the Tits cone is a closed half-space. We have seen this in
the case of the infinite dihedral group in Section 2.2.2, and the assertion in
general follows from some results that we will prove in Section 10.2.2.) Our
goal in this subsection is to prove the following weak form of Vinberg’s result,
which is valid in the Euclidean case also; see Krammer [149, Theorem 2.1.6]
for a different proof.

Proposition 2.91. If W is infinite and irreducible, then the Tits cone X does
not contain any lines through the origin.

Our proof will be based on the following lemma:

Lemma 2.92. Suppose W is infinite and irreducible. For any x # 0 in X,
there are infinitely many walls not containing x.

Proof. We may assume that the cell A containing z is a face of the fundamen-
tal chamber C' and hence that its stabilizer is W for some J ; S. Suppose
x (and hence A) is contained in all but finitely many walls. Then there is
an upper bound on the gallery distance d(A, D), where D ranges over the
chambers wC (w € W). [Here d(A, D) is defined as in Exercise 1.61, and, as
in that exercise, it is equal to the number of walls that strictly separate A
from D.] Equivalently, there is an upper bound on d(wA, C) for w € W. This
implies that the W-orbit of A is finite and hence that W has finite index
in W, contradicting Proposition 2.43. O

(See also Exercise 3.83(b), where the same result is stated and proved from a
combinatorial point of view.)

Proof of Proposition 2.91. Suppose X contains a pair of opposite points +=z
with x # 0. Since x and —x are strictly separated by all walls that do not
contain them, it follows from Theorem 2.80 that z is contained in all but
finitely many walls. This contradicts Lemma 2.92. g

*2.7 Infinite Hyperplane Arrangements

In the previous section we encountered a possibly infinite hyperplane arrange-
ment for which we were nevertheless able to carry out much of the theory of
Section 1.4. The purpose of the present (optional) section is to axiomatize this
situation and carry the theory further.
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Throughout this section we denote by H an arbitrary collection of linear
hyperplanes in a finite-dimensional real vector space V. For convenience, we
assume that we have chosen for each H € H a linear function fy: V — R
such that H is defined by the equation fy = 0. Exactly as in Definition 1.18,
we then obtain a partition of V into “cells” A, each of which is defined by
equalities or strict inequalities, one for each H € H. We again encode the
definition of a cell A by its sign sequence o(A) = (O'H(A))HGH. Explicitly, we
define o(A) to be o(x) for any x € A, where oy (x) is the sign of fy(z). The
set of cells is a poset under the face relation defined in terms of sign sequences
as in Definition 1.20.

Continuing as in Section 1.4.2, we can also work with the closed cells A.
Here A is the set obtained by replacing the strict inequalities in the definition
of A by weak inequalities; it is also the topological closure of A in V. We have

A=) B.

B<A

This implies the following characterization of the partial order on cells, which
does not explicitly refer to H:

B<A < BCA. (2.17)

We define the support of a cell A, denoted by supp A, to be its linear span, and
we define the dimension of A by dim A := dim(supp A). It is immediate from
the definitions that if B < A then dim A < dim B, since A is contained in at
least one hyperplane that does not contain B. In particular, every nonempty
collection of cells has a maximal element.

Assume throughout the rest of the section that we are given a nonempty
set X of cells, and set

X = U A.

AeX
We can now state our axioms.
(HO) X linearly spans V.

This axiom is harmless; if it failed, we could simply replace V by the span V'
of X, and we could replace H by H':={HNV'|H e H, H ? X}.

(H1) X is closed under passage to faces; equivalently, X is a union of closed
cells.

The next two axioms are more serious and can be viewed as finiteness prop-
erties. For any A, B € X, let S(A4, B) be the set of hyperplanes H € H that
strictly separate A and B, i.e., that satisty oy (A) = —oy(B) # 0.

(H2) For any A, B € X, the set S(A, B) is finite.
(H3) For any A € X there is a finite subset Ha C H that defines A.
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Here, as in Section 1.4.3, the statement means that A is defined by the condi-
tions fg = o (A) for H € H 4. It follows that each cell A € ¥ is a polyhedral
cone of the sort studied in Section 1.4.

One consequence of (H3) is that A is open in its support. More precisely,
we have

suppA C ﬂ H C ﬂ H (2.18)
HeEMH HeH A
HDA HDA

and A is open in the last of these spaces. Hence the latter is spanned by A,
and the three spaces are equal.

Before proceeding further, we need to resolve a potential ambiguity. Given
A € X, we can talk about the faces of A as defined at the beginning of this
section; let’s call these the H-faces of A. But if (H3) holds, then it would seem
more natural to consider the H s-faces of A, which can in fact be intrinsically
defined, without reference to the set Ha (see Proposition 1.27). It is this
second notion of “face” that we used in the case of the Tits cone. Fortunately,
there is no conflict:

Lemma 2.93. Suppose that axiom (H3) holds. Given A € X and Ha as
in (H3), the Ha-faces of A are the same as the H-faces of A.

Proof. Since Ha C H, the partition of A into H-cells refines the partition into
H 4-cells. It therefore suffices to show that every Ha-face of A is contained in
an H-cell. Let B be an H s-face of A, and consider any H € H. Suppose, for
instance, that fz > 0 on A. Then fz > 0 on B; hence, since B is open in its
support, either fir > 0 on B or fy =0 on B. Thus every fy has a constant
sign on B, so B is contained in an H-cell. a

We turn now to the most interesting axioms, involving products and con-
vexity. Given two sign sequences o = (0 )gen and 7 = (7H) Hen, we define
their product o1 to be the sign sequence given by

o if oy 75 O,
(oT)y = ]
Ty ifoyg =0,
for H € H. Consider now the following two conditions:

(H4) For any two cells A, B € X, there is a cell AB € X such that c(AB) =
o(A)o(B).

(H5) X is a convex subset of V.
These two conditions are in fact equivalent:

Proposition 2.94. In the presence of (H1) and (H2), axioms (H4) and (H5)
are equivalent to one another. When these axioms are satisfied, the product
of cells can be characterized as follows: Given x € A and y € B, the cell AB
contains (1 —t)x + ty € AB for all sufficiently small t > 0.
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Proof. Suppose (H4) holds. Given z,y € X, let A (resp. B) be the cell con-
taining x (resp. y). We show by induction on |S(A, B)| that the open seg-
ment (z,y) is contained in X. If S(A, B) # 0, let z be the first point (i.e.,
the point closest to x) where (x,y) crosses a hyperplane in H. Otherwise, set
z = y. Let F be the cell containing z. Then every point in (x,z) has sign
sequence equal to o(A)o(B), so (z,z) C AB C X. We also have F' < AB, so
Fisin X and z is in X. If 2z = y, we are done. Otherwise, S(F, B) & S(A, B);
hence (z,y) = (z,2) U{z} U (2,9y) € X by the induction hypothesis. This
proves (H5).

Conversely, suppose that (H5) holds. Given A, B € X, choose x € A and
y € B, and consider z; := (1 — t)x + ty for 0 < ¢t < 1. By hypothesis, z; € X
for all ¢. If ¢ is small enough, or(z) = opg(A) # 0 for all H € S(A, B);
hence oy (z) = (0(A)o(B)),, for such H. And if H € H \ S(A, B), then
ou(z) = (0(A)a(B)),, for all t € (0,1). There is therefore a cell in X' with
sign sequence o(A)o(B), and it contains z; for sufficiently small ¢ > 0. Thus
(H4) holds, as does the last assertion of the proposition. a

Assume from now on that X and X satisfy axioms (H0)—(H5). (In partic-
ular, X could be the Tits cone associated to a Coxeter group.) It is then easy
to extend to X most of the concepts and results of Section 1.4. We will briefly
run through some of these.

(1) Any two cells A, B € X have a greatest lower bound A N B, whose corre-
sponding closed cell is the intersection AN B.

Use a finite subset of H that defines both A and B, and then appeal to the
corresponding fact about finite hyperplane arrangements.

(2) A chamber of X is a cell C' € X such that oy (C) # 0 for all H € H. These
are precisely the maximal elements of Y.

Indeed, a chamber is trivially maximal. Conversely, suppose C' € X' is max-
imal and consider any H € H. In view of (HO0), there is a cell A € X with
or(A) # 0. But then C = C'A by maximality; hence oy (C) = oy (CA) # 0,
and C' is a chamber.

(3) A panel is a cell P € X with exactly one 0 in its sign sequence. Equiva-
lently, it is a cell in X' of dimension equal to dim V' — 1. Every panel is a face
of at least one chamber and at most two.

(4) Two distinct chambers C, D € X are adjacent if they have a common
panel. One can now define galleries in the obvious way and prove that any
two chambers C, D can be connected by a gallery; moreover, the minimal
length of such a gallery is |S(C, D).

(5) More generally, we can consider galleries connecting two arbitrary cells
A, B € X as in Exercise 1.62. The solution to that exercise goes through
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without change to show that the minimal length d(A, B) of such a gallery
is |S(A4, B)|. Moreover, the chambers that can start a minimal gallery from
A to B are precisely those having AB as a face. In particular, every minimal
gallery from a cell A to a chamber C starts with AC.

We turn now to subcomplexes, which we did not have occasion to consider
in the setting of finite hyperplane arrangements. By a subcomplex of X we
mean a nonempty subset X’ that is closed under passage to faces. Let X’ be
a subcomplex and let X' := J, 5 A. Then we can study X’ by viewing it as
a set of H'-cells in the linear span V' of X', where

H :={HNV'|HeH, HPX'}.

Viewed in this way, X’ satisfies all of the axioms of this section except possibly
the (equivalent) axioms (H4) and (H5).

Definition 2.95. We say that a subcomplex X/ of X is conver if X’ satisfies
(H4) and (H5), i.e., if X' :=J 45, A is a convex subset of V' or, equivalently,
if X’ is a subsemigroup of X.

Thus we can apply to convex subcomplexes all of the results that we
have proven about Y. To state one explicitly, assume for simplicity that the
chambers of X are simplicial cones (as in the setting of Section 2.6). We make
this assumption only so that we can apply the language of Section A.1.3. Then
the results of this section show that X is a chamber complex in which any
panel is a face of at most two chambers. Consequently:

Proposition 2.96. Suppose that the chambers of X are simplicial cones.
Then every convex subcomplex X' of X is a chamber complex in which every
panel is a face of at most two chambers. O

(Of course we might have dim X’ < dim X, so X’ is not in general a chamber
subcomplex of X.)

We close this section by giving some useful characterizations of con-
vex subcomplexes. Note first that there is an obvious way of construct-
ing convex subcomplexes of X using half-spaces. Namely, for any H € H
we have a convex subcomplex X\ (H) (resp. X'_(H)) consisting of the cells
in X on which fg > 0 (resp. fg < 0). Further examples can be obtained
from these by taking intersections. For example, the convex subcomplex
Yo(H) :={A e X |ou(A) =0} is the intersection X'y (H) N X_(H). The fol-
lowing proposition, which should be compared with Exercise 1.68, implies that
every convex subcomplex can be obtained as an intersection of such “halves”
of X.

Let D be a nonempty set of chambers in X'. We say that D is convez if for
all C, D € D, every minimal gallery in X from C to D is contained in D.

Proposition 2.97. Let X be a subcomplex of X. Then the following two con-
ditions are equivalent:
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(i) X7 is a convex subcomplex of X.
(ii) X’ is an intersection of subcomplexes of the form Xy (H) (H € H).

If X' contains at least one chamber, then (i) and (ii) are equivalent to each
of the following conditions:

(iii) The maximal elements of X' are chambers of X', and the set of chambers
in X' is convez.

(iv) Given A,C € X' with C a chamber, X' contains every minimal gallery
in X from A to C.

Proof. The implication (ii) == (i) is trivial, since an intersection of convex
subcomplexes is a convex subcomplex. [Note that it is automatically nonempty
because it contains the smallest cell, which is (<4, H.] To prove the converse,
assume first that X’ contains a chamber, in which case we will prove (i) =
(iv) = (iil)) = (ii).

(i) = (iv): Consider a minimal gallery A < Cy,C,...,C; = C in X.
Set Ag == Aand 4; :=C;_1NC; fori=1,...,l. Then C;,Ciy1,...,C) is a
minimal gallery from A; to C for 0 < ¢ <; hence C; = A;C. So if (i) holds
and A,C € X', it follows inductively that C; € X’ for all <.

(iv) = (iii): This is trivial.

(ili) = (ii): Let X" be the intersection of the subcomplexes X'y (H) that
contain X’. If (iii) holds, we claim that X’ and X" have the same chambers.
This implies that they are equal, since X" is a subsemigroup of X' containing
a chamber, and hence every maximal cell of X" is a chamber. To prove the
claim, let C be the set C(X) of chambers of X, and set D := C(X"). We must
show that for any C' € C \. D there is a hyperplane H € H that separates C
from D.

Choose D € D at minimal distance from C, and let D,D’,...,C be a
minimal gallery from D to C. Then D’ ¢ D, and the hyperplane H separating
D from D’ also separates D from C. We will show that all chambers in D are
on the D-side of H. Given E € D, we have d(E, D) = d(E,D’) £ 1. The sign
cannot be +, because then there would be a minimal gallery from F to D
passing through D', contradicting the convexity of D. So the sign is —, which
means that F and D are on the same side of H. This completes the proof
that (iii) = (ii) and hence that all four conditions are equivalent when X’
contains a chamber.

Suppose now that X’ does not necessarily contain a chamber. To prove
(i) = (ii), note that (i) implies that all maximal cells of X’ have the same
support U. [If A and B are maximal, then A = AB and B = BA; now use
the fact that AB and BA have the same zeros in their sign sequences.] Let
Hy == {HNU|H€H, HDP U}, and let Xy be the set of elements of ¥
contained in U. Then Xy is a set of Hy-cells in U satisfying all of our axioms,
and X' is a convex subcomplex of Xy whose maximal simplices are chambers
of Xy. Moreover, the “halves” of Xy are the subcomplexes Yy N X (H)
for H € H, H 2 U. By the case already treated, it follows that X’ is an
intersection of such subcomplexes. This implies (ii), since
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Su= () Zo(H)= () Z4(H)NZ_(H). u|
HDU HDU

Exercise 2.98. Show that in the presence of the other axioms, (H3) can be
replaced by the following apparently weaker condition:

(H3") Any chamber C' € X can be defined by finitely many linear inequalities
of the form f > 0.



3

Coxeter Complexes

Let (W, S) be a Coxeter system (Definition 2.50). Recall from Section 2.6
that S is assumed to be finite. In Chapter 2 we proved some algebraic results
about (W,S), guided by our geometric intuition from Chapter 1. We now
develop the corresponding geometric theory. Our point of view in this chapter
is purely combinatorial, though we often indicate alternative proofs that make
use of the (optional) Sections 2.6 and 2.7. We will also refer to those sections
in some exercises, which the reader may omit.

3.1 The Coxeter Complex

Recall from Definition 2.12 that a standard coset in W is a coset of the
form wW; with w € W and W, := (J) for some subset J C S. The results of
Section 1.5.9 [and Section 2.6] motivate the following definition.

Definition 3.1. Let X (W, S) be the poset of standard cosets in W, ordered
by reverse inclusion. Thus B < A in X' if and only if B D A as subsets of W,
in which case we say that B is a face of A. We call X(W,S) the Coxeter
complex associated to (W, 95).

It is worth reemphasizing the motivating example:

Definition 3.2. The Coxeter complex X'(W, S) is called spherical if it is finite
or, equivalently, if W is finite.

The terminology comes from the fact that by Theorem 2.65, a spherical
Coxeter complex is isomorphic to the complex X (W, V') associated to a finite
reflection group (Section 1.5); hence it is a simplicial complex triangulating a
sphere by Proposition 1.108. In the more general setting of Definition 3.1, the
word “complex” will be justified in Theorem 3.5 below, where we will prove
that ¥ := X(W,S) is indeed a simplicial complex. [See also Remark 2.83.]
Anticipating this result, we proceed with some further terminology.
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Definition 3.3. The elements of X' are called simplices. The maximal sim-
plices, which are the singletons {w}, are called chambers and are identified
with the elements of W. The simplices of the form w(s) = {w,ws} (with
w € W and s € S) are called panels. We set C := 1 and call it the fundamen-
tal chamber. Each panel w(s) is a face of exactly two chambers, w and ws,
which are said to be s-adjacent.

Note that there is an action of W on X' by left translation, and the action
on the chambers is simply transitive. Note further that we can construct
“galleries” in X' in the way that is familiar from Chapter 1: Given w € W and
a decomposition w = s1 ---5; (with s; € S), we have a sequence of chambers

F:C:CO,CZ,...,Cl:wC, (31)

where C; = s1---5;C, and C;_; is s;-adjacent to C; fori=1,... 1.

At this point the reader may need to refer to Section A.1.3 in Appendix A
for the terminology regarding chamber complexes and type functions. Let’s
add one more bit of terminology:

Definition 3.4. A chamber complex is called thin if every panel is a face of
exactly two chambers.

Theorem 3.5. The poset X := X(W, S) is a simplicial complex. Moreover, it
is a thin chamber complex of rank equal to |S|, it is colorable, and the action
of W on X is type-preserving.

Proof. To show that X' is simplicial, there are two things we must verify (see
Definition A.1):

(a) Any two elements A, B € X have a greatest lower bound.
(b) For any A € X, the poset X< 4 is a Boolean lattice.

For (a) we can use the W-action on X' to reduce to the case that one of
the two elements is a face of the fundamental chamber C| i.e., is a standard
subgroup. What we must prove, then, is that a standard subgroup W and a
standard coset wWp (where J, K C S) have a least upper bound in the set of
standard cosets, with respect to the ordering by inclusion. Now any standard
coset containing the two given ones contains the identity and hence is a stan-
dard subgroup. Moreover, it contains w and hence also Wx = w™ ! (wWg).
So the upper bounds of our two standard cosets are the standard subgroups
containing J, K, and w. In view of Proposition 2.16, there is indeed a smallest
upper bound, namely, the standard subgroup Wy, where L := JU K U S(w).

To prove (b), we may assume that A is the fundamental chamber C. In
this case, Y<c is the set of standard subgroups of W (ordered by reverse
inclusion). By Proposition 2.13 we have

Y<c = (subsets of S)°” 2 (subsets of S) ,
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where the second isomorphism is given by J — S~\.J for J C S. This proves (b)
and completes the proof that X' is simplicial. The proof also shows that all
maximal simplices have the same rank, equal to |S|. And the discussion sur-
rounding (3.1) above implies that any two of them can be connected by a
gallery and that any panel is a face of exactly two chambers. So X' is a thin
chamber complex.

Finally, we can define a W-invariant type function 7 on X, with values
in S, by setting 7(wWjy) := S\ J. O

We will continue to denote by 7 the type function constructed in the proof.
For emphasis, we repeat the definition:

Definition 3.6. X' (W, S) has a canonical type function with values in S, de-
fined by
T(wWy) =5~ J

for w € W and J C S. Equivalently, the simplex wW has cotype J.

We have already seen the canonical type function in Section 1.6.2 in the
context of finite reflection groups, where we also saw examples illustrating it.
Here is one more:

Example 3.7. Let W be the group of isometries of the plane generated by
the (affine) reflections with respect to the sides of an equilateral triangle. This
is an example of a Euclidean reflection group. Although we will not treat the
theory of such groups systematically until Chapter 10, the reader should find
it plausible that W is the Coxeter group

(s,touss? =2 =u? = (st)® = (tu)® = (su)®* = 1)

and that the Coxeter complex X (W’, {s,t,u}) is the plane tiled by equilat-
eral triangles. We will give an ad hoc proof of this in Section 3.4.2 below
(Example 3.76); in the meantime, the reader is advised to take the assertion
on faith. Figure 3.1 shows the panels of the fundamental chamber C' labeled
by the reflections that fix them, or, equivalently, by their cotypes. The black
vertex of C' is not in the panel fixed by s, so it is of type s and hence all black
vertices are of type s. Similar remarks apply to the other two types.

Exercises

Throughout these exercises (W, S) is a Coxeter system and X' := X (W, S) is
the associated Coxeter complex.

3.8. Give an alternative proof that X' is simplicial based on Exercise A.3.

3.9. The canonical type function yields a notion of s-adjacency for any s € S
(Section A.1.4). Show that this is consistent with Definition 3.3.
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A4

VAN

Fig. 3.1. The canonical type function; black = s, gray = ¢, white = u.

3.10. For every simplex A € X', show that

A= C,

Cc>A
where C' ranges over the chambers > A.

3.11. (a) Let C and D be chambers of X such that d(C,D’) < d(C, D) for
every chamber D’ adjacent to D. Show that X' is spherical and that C
and D are opposite. [Recall that if X is spherical, then X can be identified
with the complex associated to a finite reflection group, so “opposite”
makes sense.]

(b) Deduce (or show directly) that X' is spherical if and only if it has finite
diameter, where the diameter of a chamber complex is the supremum of
the gallery distances between its chambers.

3.12. Assume that (W,S) is irreducible and W is infinite. The content of
Proposition 2.43, then, is that X' has infinitely many vertices of each type s.
[Take J = S ~\ {s} in the proposition.]

(a) Deduce that for each chamber C' and each s € S, the distance d(C,y) is
unbounded as y ranges over the vertices of type s. Equivalently, d(C,y)
is unbounded for a fixed vertex y of type s as C' ranges over all chambers.
Here d(—, —) denotes the gallery distance defined in Section A.1.3.

(b) Use Proposition 2.45 to prove the following stronger result: For each
vertex x € X and each s € S, the distance d(x,y) is unbounded as y
ranges over the vertices of type s.
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3.13. For any simplex A € X, show that the stabilizer W4 of A in W acts
transitively on the set C(X)> 4 of chambers having A as a face.

Warning. There is potential confusion between the notation W, for the sta-
bilizer of a simplex and W for a standard subgroup. But it should always be
clear from the context which one is intended.

3.14. We have followed the conventions of Section A.1.1 in describing X' as
a poset. Convert this to a more conventional description as follows: There is
one vertex for each maximal (proper) standard coset, and a finite collection of
such cosets forms a simplex if and only if their intersection is nonempty. More
succinctly, one expresses this by saying that X' is the nerve of the covering
of W by its maximal standard cosets.

3.15. Give a bijection between the geometric realization |X| and equivalence
classes of points of the Tits cone under multiplication by positive scalars.

3.2 Local Properties of Coxeter Complexes

We continue to denote by X' the Coxeter complex X' (W, S) associated to a
fixed Coxeter system (W, .S). By “local properties” of X we mean properties
of the links of simplices (Definition A.19). For example, it is of interest to
know whether these links are chamber complexes.

Proposition 3.16. Given A € X, let J := S~ 1(A) be its cotype. Then lks A
is isomorphic to the Cozeter complex X (Wy, J) associated to the Cozeter sys-
tem (Wy,J). In particular, this link is a chamber complez.

(Note that the statement makes sense because (W, J) is indeed a Coxeter
system by Exercise 2.51.)

Proof. We may assume that A is a face of the fundamental chamber. Then A
is the standard subgroup W;. Recall now that there is a poset isomorphism
lky A = X5 4; hence the link of A is isomorphic to the set of standard cosets
in W that are contained in W, ordered by reverse inclusion. But the standard
cosets that are contained in W are precisely the same as the standard cosets
associated to the Coxeter system (W, J). Thus Xs 4 = X(Wy, J). |

It follows that X satisfies the hypotheses of Proposition A.20. Conse-
quently:

Corollary 3.17. X is completely determined by its underlying chamber sys-
tem. More precisely, the simplices of X are in 1-1 correspondence with the
residues in C(X), ordered by reverse inclusion. Here a simplex A corresponds
to the residue C(X)>a, consisting of the chambers having A as a face. O
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Remark 3.18. We have included this corollary only to force the reader to
learn the terminology associated with chamber systems, especially the concept
of residue. But the statement of the corollary is in fact a complete tautology in
view of the definition of X in terms of standard cosets. Indeed, if one identifies
chambers with elements of W, then it is immediate from the definitions that
the residues are the standard cosets.

Proposition 3.16 has a simple interpretation in terms of Coxeter matrices.
Recall, first, that the Coxeter system (W,S) is determined by its Coxeter
matrix M = (m(s,t))s tes” So we may think of X as a simplicial complex
associated to M. Next; note that the rows and columns of M are indexed
by S, which is also the set of types of the vertices of Y. What the proposition
says, then, is that lk A is the Coxeter complex associated to the matrix M
obtained from M by selecting the rows and columns belonging to the cotype J
of A.

This becomes even easier to use if we translate it into the language of
Cozeter diagrams. Recall that the diagram of (W, S) is a graph D with labels
on some edges. There is one vertex for each s € S, with s joined to t if
m(s,t) > 3, and with a label over that edge if m(s,t) > 4. The passage from
M to Mj above, and hence the passage from X to lk A, corresponds to passing
to the induced subdiagram D j with vertex set J equal to the cotype of A. In
other words, we retain the vertices in the cotype (and all edges between them).
Equivalently, we delete all vertices in 7(A) (and all edges touching them).

Consider, for example, the group W = PGLy(Z) studied in Section 2.2.3.
Its diagram is

0.9]
oO———Oo0——o0.

The Coxeter complex X' has rank 3 (dimension 2), so there are three types of
vertices. Let’s compute the link of each type of vertex.

According to the recipe above, we must delete one vertex at a time from
the Coxeter diagram of W. This yields the Coxeter diagrams of the dihedral
groups Da,,, where m = oo, 2, and 3, respectively. Now it is easy to figure out
what the Coxeter complex associated to Ds,, looks like, and in fact, we have
already seen it in Chapters 1 and 2. Namely, it is a 2m-gon; in other words, it
is a triangulated circle with 2m edges if m < oo, and it is a triangulated line
if m = oo. So our three links in this example are a line, a quadrilateral, and
a hexagon.

Exercise 3.19. Look at Figure 2.5. Can you find the three types of links in
the picture?

This example illustrates a general principle, valid for all Coxeter com-
plexes: The link of a codimension-2 simplex of cotype {s,t} (with s #¢) is a
2m-gon, where m = m(s, t). This fact yields a geometric interpretation of the
Coxeter matrix M:



3.2 Local Properties of Coxeter Complexes 121

Corollary 3.20. The Cozxeter matriz M of (W,S) can be recovered from X
as follows: For any s,t € S with s # t, m(s,t) is the unique number m
(2 <m < o0) such that the link of every simplex of cotype {s,t} is a 2m-gon.

O

This shows, in particular, that the Coxeter group W is determined up to
isomorphism by Y. We will see this again in the next section, from a different
point of view.

Remark 3.21. Note that a 2m-gon has diameter m, where the diameter of a
chamber complex is the supremum of the gallery distances between its cham-
bers. So we can also write the geometric interpretation of M as

m(s,t) = diam(lk A) ,

where A has cotype {s,t} as above. The result in this form is valid even when
s =t. [In this case the link has exactly two chambers, which are adjacent, so
the diameter is indeed 1 = m(s, s).]

We can use this corollary, together with Tits’s solution to the word problem
for Coxeter groups, to give a simple answer to a question that might seem,
a priori, to be very difficult: How can one describe the totality of minimal
galleries connecting two given chambers? This is easy in the 1-dimensional
case, where X' is a 2m-gon: Minimal galleries are unique unless m < oo and the
two given chambers C7 and Cs are at maximum distance m from each other,
i.e., they are opposite. In this case there are exactly two minimal galleries
connecting Cy to Cs.

Translating this result to the link of a simplex A of codimension 2 in an
arbitrary Coxeter complex, we obtain a similar description of the minimal
galleries in the subposet X>,4. Visualize, for example, the case that X is
2-dimensional and A is a vertex v whose link is finite. Then for some m < oo,
2> 4 contains 2m chambers that form a solid 2m-gon centered at v. The only
nonuniqueness of minimal galleries in this subposet arises from the fact that
there are two ways of going around the 2m-gon to get from a given chamber
to the opposite chamber.

Since galleries correspond to words, we can use the solution to the word
problem (Section 2.3.3) to analyze the general case. The answer, roughly,
is that the nonuniqueness of minimal galleries in a Coxeter complex can be
explained entirely in terms of the obvious nonuniqueness that occurs in links
of codimension-2 simplices. To state this precisely, we need some terminology.

Definition 3.22. If I': Cy,...,Cy is a gallery, then the type of I is the se-
quence s := (81,...,54) such that C;_; is s;-adjacent to C; for i = 1,...,d.

(This notion of “type of a gallery” makes sense in any colorable chamber
complex; we will use it again later.)
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Suppose I' has a subgallery of type (s,t,s,t,...) and of length m =
m(s,t) < oo, where s # t¢. Then this subgallery lies in X's4 for some
codimension-2 simplex A of cotype {s,t}, and we may replace it by the other
minimal gallery in X'> 4 with the same extremities. This produces a new gallery
I'" from Cy to Cy.

Definition 3.23. The gallery I is said to be obtained from I" by an ele-
mentary homotopy. Two galleries are said to be homotopic if there is a finite
sequence of elementary homotopies transforming one to the other.

Figure 3.2 shows an elementary homotopy from a gallery of type (u,t,s,t,u)
to one of type (u, s,t,s,u).

\/ \/ \/ /

u t N u
/\ /\ /\ \
Fig. 3.2. An elementary homotopy.

The following result is now immediate from our earlier observations:

Proposition 3.24. Any two minimal galleries with the same extremities are
homotopic. |

Remark 3.25. We have framed our discussion in terms of links. We could
equally well have used the language of residues. Indeed, if A is a codimension-2
simplex of cotype {s,¢} as above, then the set of chambers in X' 4 is a residue
of type {s,t}. So our elementary homotopies all take place in rank-2 residues.
Here the rank of a residue is the cardinality of its type, which is the same as
the codimension of the corresponding simplex A.

Exercise 3.26. Give a method for using homotopies to decide whether a given
gallery is minimal and if not, to obtain a minimal gallery from it.

Finally, we can use our calculation of links to answer another natural
question, at least to readers who are familiar with combinatorial topology:
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When is X' a manifold? This question arises naturally because triangulated
manifolds (without boundary) are the canonical examples of thin chamber
complexes (Example A.9). We already know the answer if W is finite: In this
case X is a sphere (see the remarks following Definition 3.2); in particular, X
is a manifold.

What happens if W and X are infinite? There is an obvious necessary
condition. Namely, manifolds are locally compact, hence locally finite, i.e.,
every nonempty simplex A is a face of only finitely many chambers. In other
words, the link of A must be finite. Conversely, if the link of every nonempty
simplex is finite, then it is in fact a sphere (since it is a finite Coxeter complex).
We leave it as an exercise for the interested reader to deduce that X is then
a manifold. This proves the following:

Corollary 3.27. The following conditions are equivalent:

(i) X' is a manifold.
(ii) X is locally finite.
(iii) Every proper standard subgroup of W is finite. g

For example, the Coxeter complex associated to PGLy(Z) is not a mani-
fold. One can see the nonmanifold points in Figures 2.3 and 2.5: They are the
cusps.

Exercise 3.28. If (iii) holds and W is infinite, show that (W, .S) is irreducible.

Remark 3.29. Condition (iii) is quite restrictive. One can show that it holds
only in the following three cases: (a) W is finite; (b) W is an irreducible Euclid-
ean reflection group; (c) W is a hyperbolic reflection group whose fundamental
domain is a closed simplex contained entirely in the interior of the hyperbolic
space. See Chapter 10 for definitions of the terms used in (b) and (c¢) and for
more information.

Even though we have not yet officially discussed Euclidean reflection
groups, most readers probably have some intuition about them. For exam-
ple, Dy is a Euclidean reflection group acting on the line, and the group
of Example 3.7 is a Euclidean reflection group acting on the plane. It is
natural to wonder why reducible Euclidean reflection groups were excluded
in Remark 3.29 (and in Exercise 3.28): Given Euclidean reflection groups
W1 and W5 acting on Euclidean spaces F; and Es, isn’t their product W a
FEuclidean reflection group acting on F = F; X Fs, which is a Euclidean space
and hence a manifold? And doesn’t X triangulate this manifold? The answer
is “yes” to the first question, but “no” to the second. The following exercise
explains what happens.

Exercise 3.30. Let (W', S") and (W",S") be Coxeter systems, and let (W, S)
be their product (with W := W’ x W"” and S := S" U S”). Show that

(W, 8) = 2(W', 8"« 2(W",S"),
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where the asterisk denotes the join operation. [Recall that the join A of two
simplicial complexes A" and A” with vertex sets V' and V" has vertex set
equal to the disjoint union V' II V" and has one simplex A’ U A” for every
A" € A and A” € A”. From the poset point of view, then, A is simply
the Cartesian product of A" and A”. But its geometric realization |A| is not
the Cartesian product |A’| x |A”|; in fact, A does not even have the right
dimension for this to be true.]

Returning to the question whether a reducible Coxeter group can yield a
Coxeter complex that is a manifold, the essential point is that the join of two
manifolds that are not spheres is generally not a manifold. [But the join of
two spheres is a sphere.]

This discussion suggests that the Coxeter complex X'(W,S) is not always
the “best” geometric model for a Coxeter group W. For example, it would
seem more reasonable to use a product of Euclidean spaces rather than a
join of Euclidean spaces in the case of a reducible Euclidean reflection group.
The result is a cell complex whose cells are products of simplices rather than
simplices. We will return to this circle of ideas in Chapter 12.

3.3 Construction of Chamber Maps

We continue to assume that (W, S) is a Coxeter system and that ¥ = X(W, S)
is the associated Coxeter complex.

3.3.1 Generalities

In studying X, it is quite easy to work with the chambers and the adjacency
relations. It is awkward, on the other hand, to work with the vertices, which
correspond to the maximal (proper) standard cosets wW; with J = S ~\ {s}
for some s € S (see Exercise 3.14). It is therefore useful that we never have to
think about the vertices, i.e., that X is determined by its associated chamber
system, consisting of the set of chambers [which correspond to the elements
of W] together with the adjacency relations [given by right multiplication by
elements of S]. See Corollary 3.17 and Remark 3.18. The specific consequence
of this that we will need is that if we want to construct an endomorphism
of X (i.e., a chamber map ¢: ¥ — X), then we need only give a function ¢’
on the chambers that is compatible with the adjacency relations.

We could deduce this from general considerations involving chamber sys-
tems, but we prefer to give a direct proof. In order to motivate the precise
statement, let’s think about what “compatible” should mean in the rough
statement given above. If we take this to mean “preserving s-equivalence for
all s,” then we are dealing only with type-preserving endomorphisms of X'. To
handle the general case we must specify, in addition to ¢’, a permutation ¢”
of S that describes how ¢ mixes up the vertex types (see Proposition A.14).
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The compatibility condition, then, is that ¢’ takes s-equivalent chambers to
@ (s)-equivalent chambers.
Here, now, is the precise result:

Lemma 3.31. Endomorphisms ¢ of X are in 1-1 correspondence with pairs
(¢',¢"), where ¢ is a function W — W, ¢" is a permutation of S, and
@' (ws) = ¢’ (w) or ¢'(w)g"(s) for allw € W and s € S.

Proof. Let ¢ be an endomorphism of Y. Then the restriction of ¢ to the
chambers yields a function ¢': W — W. (Recall that the chambers are the
singleton standard cosets and are identified with the elements of W.) We also
have a type-change map ¢, (Proposition A.14), which is a bijection ¢" :=
¢.: S — S. Then ¢ takes s-adjacent chambers to ¢”(s)-equivalent chambers,
Le., ¢'(ws) = ¢'(w) or ¢'(w)¢”(s).

Note that ¢ is completely determined by the pair (¢', ¢"). For if A := wW;
is an arbitrary simplex of X, then A is the face of cotype J of the chamber w;
so ¢(A) must be the face of ¢’ (w) of cotype ¢”(J); in other words, ¢p(wW;) =
¢ (W)W ().

Finally, we must show that every pair (¢’,¢"”) as in the statement of the
lemma arises from an endomorphism ¢. To this end we simply define ¢, as we
must, by ¢(wW;) = ¢'(w)Wy (). It is easy to check that ¢ is a well-defined
chamber map that induces ¢’ on the chambers and ¢” on the types. O

The next two subsections illustrate the lemma.

3.3.2 Automorphisms

Recall that the W-action on X is simply transitive on the chambers; in partic-
ular, this action is faithful, in the sense that the corresponding homomorphism
W — Aut X is injective. Here Aut X' denotes the group of simplicial automor-
phisms of Y.

Proposition 3.32. The image of W — Aut X is the normal subgroup Auty X
consisting of the type-preserving automorphisms of X.

(This shows, for the second time, that W is determined up to isomorphism
by its Coxeter complex X.)

Proof. We already know that W acts as a group of type-preserving automor-
phisms of Y. Conversely, suppose ¢ is an arbitrary type-preserving automor-
phism, and let ¢’ and ¢" be its “components” as in Lemma 3.31. Then ¢” is the
identity, so ¢'(ws) = ¢’(w)s for all w and s. [The possibility ¢'(ws) = ¢'(w) is
excluded because ¢ is an automorphism.] It follows easily that ¢'(w) = ¢'(1)w
for all w, so ¢’ is left multiplication by wy := ¢’(1), and hence ¢ is given by the
action of wi. This proves everything except the normality of Autg X, which
is left as an exercise. O
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There is a second obvious source of automorphisms of Y. Namely, there
is a homomorphism Aut(W,S) — Aut X, where Aut(W,S) is the group of
automorphisms of W stabilizing S; for such an automorphism takes standard
cosets to standard cosets and hence induces an automorphism of Y.

Proposition 3.33. The homomorphism Aut(W,S) — Aut X just defined is
injective, and its image is the group Aut(X,C) consisting of the automor-
phisms of X that stabilize the fundamental chamber C = 1.

Proof. Given f € Aut(W,S), its image ¢ € Aut X' has components ¢’ = f and
@" := f|s. This shows that the homomorphism is injective. And ¢ stabilizes
C because f(1) = 1. Conversely, suppose we are given ¢ € Aut(X,C), and
let @', ¢" be its components. Then ¢’ is a bijection satisfying ¢’(1) = 1 and
@' (ws) = ¢ (w)d(s). Tt follows that ¢'(s1---54) = ¢”(s1) - ¢"(sq) for all
$1,...,584 € S. This implies that ¢’ is a homomorphism, hence an automor-
phism, and that ¢'(s) = ¢”(s) for all s € S. Thus ¢’ is in Aut(W,S) and ¢ is
its image in Aut(X, C). O

Remark 3.34. The group Aut(W,S) is quite easy to understand, in view
of the Coxeter presentation of W: An element of this group is determined by
giving a permutation 7 of S that is compatible with the Coxeter matrix, in the
sense that m(mw(s), n(t)) = m(s,t) for all s,t € S. More concisely, Aut(W, S)
is simply the group of automorphisms of the Coxeter diagram of (W, .S).

Exercises

3.35. Show that the full automorphism group of X is the semidirect product
Autg X x Aut(X, C). Hence Aut ¥ =2 W x Aut(W, S).

3.36. Suppose W is an irreducible finite reflection group. By looking at the
list in Section 1.5.6 of possible Coxeter diagrams, show that with one excep-
tion, Aut(W, S) is either trivial or of order 2. [The exception is the group of
type D4.] So, with one exception, W is either the full automorphism group of
X7 or a subgroup of index 2.

3.37. Specialize now to the case that W is the group of symmetries of a
regular solid X, and note (again by looking at the list) that Aut(W,S) is of
order 2 if and only if X is self-dual. Explain this geometrically. More precisely,
explain why an isomorphism from X to its dual induces a “type-reversing”
automorphism of X.

3.3.3 Construction of Foldings

As a final illustration of Lemma 3.31, we will construct maps that, intuitively,
“fold X onto a half-space along a wall.” The significance of this will become
clear in the next section.
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Proposition 3.38. Let Cy and Cy be adjacent chambers of X = X(W,S).
Then there is an endomorphism ¢ of X with the following properties:

(1) ¢ is a retraction onto its image .
(2) Fvery chamber in « is the image of exactly one chamber not in .

(3) ¢(C2) = Cy.

To construct ¢, we may assume that C; is the fundamental chamber C,
in which case C5 is necessarily sC for some s € S. Before beginning the proof
based on Lemma 3.31, we remark that there is a very short proof that uses
the Tits cone instead of the proposition. Namely, identify X' with the set of
cells in the latter, and let cry (resp. a—) be the set of cells in the closed half-
space Uy (s) (resp. U_(s)), where the notation is that of Sections 2.5 and 2.6.
Then we can take ¢ to be the map given by the reflection s on o and by the
identity on a.. It is well defined because s is the identity on oy N «—, which
consists of the cells in Hy.

But we will give a purely combinatorial proof using Lemma 3.31. The crux
of the proof is the next lemma, which constructs the ¢’ component of the
desired ¢ (still assuming that Cy = C and Cy = sC'). Recall, for motivation,
that there are two possibilities for an element w € W: either I(sw) = l(w) — 1
or I(sw) = l(w) + 1. In the first case, w admits a reduced decomposition
starting with s, so there is a minimal gallery of the form C,sC,... wC. We
therefore expect that there is a “wall” that separates C' from sC, and this wall
should also separate C' from wC'. Thus we should have wC' ¢ « in this case.
In the second case, there is a minimal gallery of the form C, sC, ..., swC. So
we expect that swC' is not in a but that its “mirror image” wC' is in a. These
considerations motivate the following lemma and its proof:

Lemma 3.39. Fiz s € S. Then there is a function ¢s: W — W with the
following properties:

(1) ¢ is a retraction onto its image s, which consists of the elements w € W
such that l(sw) = l(w) + 1.

(2) Each element of oy is the image under ¢s of exactly one element of the
complement o’,.

(3) The left-translation action of s on W interchanges the sets as and o).

(4) For each t € S, ¢s takes t-adjacent elements of W to elements that are
either equal or t-adjacent.

Proof. 1t is clear how we should define ¢g:

) w it l(sw) = l(w) + 1,
9s(w) = {sw if I(sw) = l(w) — 1.

And it is immediate from this definition that (1)—(3) hold. It remains to
verify (4). We will prove a more precise result, which should be plausible
in view of the “folding” interpretation: Consider two t-adjacent elements w
and wt for some w € W. Then we claim:
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(a) If w and wt are both in g or both in ., then ¢s(wt) = ¢s(w)t.
(b) If w is in a; and wt is in o, then ¢s(w) = w = ps(wt).

Assertion (a) is immediate from the definition of ¢5. To prove (b), note that
the assumptions imply that I(sw) = l(w) + 1 and I(swt) = l(wt) — 1. This
implies, first, that {(wt) = [(w) + 1. For we have

l(wt) =1(swt) +1>I(sw) =l(w) +1.

We can now apply the folding condition (F) of Section 2.3.1 to conclude that
swt = w; hence ¢4(wt) = swt = w, as claimed. a

Remark 3.40. The proof explains why we called condition (F) the folding
condition.

Proof of Proposition 3.38. Assuming still that C; = C' and Cy = sC, we can
set ¢’ = ¢, and ¢"” = idg. Everything should be clear now, except perhaps
for (1), which can be expressed by saying that ¢ is idempotent, i.e., that ¢? =
¢. But ¢ and ¢ are type-preserving chamber maps that agree on chambers;
hence they agree on all simplices. a

3.4 Roots

We are ready, finally, to complete the circle of ideas begun in Chapter 2. Recall
that our treatment of Coxeter groups, starting in Section 2.1, was based on
the intuition that W should be a “reflection group” and that there should be
a pair of “opposite roots” for each reflection. We justified this intuition by
means of the canonical linear repesentation in Section 2.5.3. We now describe
an alternative approach to roots from a purely combinatorial point of view.

We will begin by developing, following Tits [247], a theory of roots and
reflections in an arbitrary thin chamber complex; this theory is based on the
notion of “folding” that we have already introduced informally. Once the basic
properties of foldings have been laid out, it will be evident that a Coxeter
complex X(W,S) does indeed possess a rich supply of roots and that W is
generated by reflections of Y. Finally, we will prove a theorem of Tits that
characterizes the Coxeter complexes as the thin chamber complexes with a
“rich supply” of roots.

A note on terminology: We will not have root vectors in this context, but
we will have the analogues of half-spaces, and, following Tits, these will be
called “roots.” In the setting of finite reflection groups, they are of course in
canonical 1-1 correspondence with root vectors (see Section 1.5.10). Roots are
sometimes called half-apartments because Coxeter complexes are called apart-
ments in the theory of buildings, as we will see in Chapter 4. As a reminder
of the heuristic connection with the root vectors of Chapter 1, the roots in
the present chapter will be denoted by lowercase Greek letters «, 3, .. ..
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3.4.1 Foldings

Let X be an arbitrary thin chamber complex. Recall that an endomorphism
¢ of X is called idempotent if ¢*> = ¢ or, equivalently, if ¢ is a retraction onto
its image.

Definition 3.41. A folding of X' is an idempotent endomorphism ¢ such that
for every chamber C' € ¢(X) there is exactly one chamber C' € X' ~\ ¢(X)
with ¢(C") = C.

Proposition 3.38 gives many examples of foldings. More concretely, the
reader can easily visualize foldings in the finite Coxeter complexes of Chap-
ter 1 (where one folds along a hyperplane) or in the plane tiled by equilateral
triangles (Example 3.7 above).

Let ¢ be a folding and let « be its image ¢(X). It is easy to see that «
is a chamber complex in its own right, since ¢ takes galleries to pregalleries.
Let o/ be the subcomplex of X generated by the chambers not in «; thus o
consists of all such chambers and their faces. By the definition of “folding,”
then, ¢ induces a bijection

C(a)) =% C(a),

where C(a) (resp. C(a’)) denotes the set of chambers in « (resp. o). For
brevity, we will temporarily refer to o and o’ as the halves of X determined
by ¢.

We now define a function ¢’ on C(X) by taking ¢’|¢(a/) to be the identity
and ¢'|¢(a) to be the inverse of the bijection above. Intuitively, ¢’ is the
“folding opposite to ¢”; but ¢’ is not really a folding, since it is defined only
on chambers. We do not know whether, in the present generality, ¢’ can be
extended to an endomorphism of Y. Nevertheless, the following is true.

Lemma 3.42. ¢’ takes adjacent chambers to chambers that are equal or ad-
jacent.

Proof. Let C' and D be adjacent chambers. If they are both in o', there is
nothing to prove. So assume that at least one of them, say C, is in «. Then
¢'(C) is the unique chamber C" € o’ such that ¢(C’') = C. Let A:=CnND
be the common panel of C' and D, and let A’ be the panel of C’ such that
¢(A") = A. Finally, let D’ be the chamber adjacent to C’ along A’. See
Figure 3.3. The figure shows the picture we expect if C' and D are both in «;
the dashed vertical line in the middle is intended to suggest the “fold line,”
i.e., the “wall separating « from o'.”

Since ¢(D’) is a chamber having A as a face, we must have either ¢(D’) =
C or ¢(D') = D. Suppose first that D’ € o, as suggested by the picture. Then
we cannot have ¢(D") = C, since then C’ and D’ would be distinct chambers
in o mapping to C. So we must have ¢(D’) = D, which implies that D € «
and that ¢'(D) = D’. Thus ¢'(D) is adjacent to ¢'(C') in this case.
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Fig. 3.3. Proof of Lemma 3.42, first case.

The other possibility is that D’ € «. In this case the correct picture is
presumably as in Figure 3.4, but we must prove this rigorously. Since D’ is in «,
so is its face A’. Hence A = ¢(A’) = A’. Thus all four of our chambers have
the common face A. The thinness of X' now implies that {C,D} = {C’,D'}.

(b |

N
1¢/

Fig. 3.4. Proof of Lemma 3.42, second case.

Since C' # C' [because one is in « and the other is in '], the only possibility
isthat C =D € o and D =C" € /. Thus ¢'(D) =D =C" = ¢'(C). |

Note that as a consequence of this lemma, ¢’ takes galleries to pregalleries.
In particular, it follows that o’ is a chamber complex. We now proceed to
develop the basic properties of our folding ¢ and the associated function ¢’
and subcomplexes o and .

Lemma 3.43. There exists a pair C,C’" of adjacent chambers with C' € « and
C’ € &'. For any such pair, we have ¢(C") = C and ¢'(C) = C".
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Proof. Since C(«) and C(«’) are both nonempty, there is a gallery I" that starts
in @ and ends in o’. Then I" must cross from « to o’ at some point, whence
the first assertion. Suppose, now, that C' and C’ are as in the statement of the
lemma, and let A := CNC’. Then A < C € a, so A is fixed by ¢ and hence
@(C’) has A as a face. By thinness, we must have ¢(C") = C or ¢(C’) = C".
But the second possibility would imply C’” € «, so ¢(C") = C. It now follows
from the definition of ¢’ that ¢'(C) = C". |

Lemma 3.44. o and o' are convex subcomplexes of X, in the sense that if I’
is a minimal gallery in X with both extremities in « (resp. o), then I lies
entirely in o (resp. o).

Proof. Suppose I is a minimal gallery with both extremities in «. If I" is not
contained in «, then it must cross from a to o’ at some point. Thus there
is a pair of consecutive chambers in I" to which we can apply Lemma 3.43.
But then the pregallery ¢(I") has a repetition. We can therefore get a shorter
gallery with the same extremities as I', contradicting the minimality. A similar
argument (using ¢’) works for o/. O

Lemma 3.45. Let C and C’ be as in Lemma 3.43. Then
Cla)={D eC(X)|d(D,C)<d(D,C")}
and
C()y={DecC(X)|dD,C)>dD,C")}.
In particular, no chamber of X is equidistant from C' and C'.

(Note that the last assertion is not vacuous, i.e., there are thin chamber com-
plexes in which a chamber D is equidistant from two adjacent chambers C, C’.
The intuitive reason for the impossibility of this in the present context is that
the “wall” separating C' from C’ would have to cut through D, contradicting
the fact that our two halves o and o’ are subcomplexes.)

Proof. Note that the right-hand sides of the two equalities to be proved are
disjoint sets of chambers. Consequently, since o and o’ partition the chambers
of X it suffices to prove that the left-hand sides are contained in the right-
hand sides. Suppose, then, that we are given a chamber D € «a, and let I be a
minimal gallery from D to C’. Then, as before, I must cross from « to o/ at
some point, so we may fold it (i.e., apply ¢ to it) to obtain a pregallery from
D to ¢(C”) = C that has a repetition. Hence d(D, C) < d(D, C"), as required.
A similar argument using ¢’ proves the second inclusion. O

Lemma 3.46. Suppose C and C' are adjacent chambers such that ¢(C') = C.
Then ¢ is the unique folding taking C’ to C.
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Proof. Note first that we have C € ¢(X) = « and C’ € &' [because ¢(C’) #
C']. So Lemma 3.45 is applicable and yields a description of the two halves «
and o’ of X' determined by ¢. If ¢ is a second folding with ¢(C’) = C, then we
can similarly apply Lemma 3.45 to obtain the same description of the halves
of X determined by . In particular, it follows that v, like ¢, is the identity
on « and maps C(a’) bijectively to C(«). We must show that ¢ agrees with ¢
on all vertices of /.

To begin with, we know that the two foldings both take C” to C and fix
all vertices of the panel C' N C’ of C’; hence they agree pointwise on C’ (i.e.,
they agree on all vertices of C”). We will complete the proof by showing that ¢
and v continue to agree pointwise as we move away from C’ along a gallery I"
in . It suffices to show that if ¢ and v agree pointwise on a chamber D € o’
then they agree pointwise on any chamber E € o that is adjacent to D.

Let A be the common panel DN E. Let Dy := ¢(D) = (D), let Ay :=
¢(A) = (A), and let E; be the unique chamber distinct from D; and having
A as a face; see Figure 3.5. Then necessarily ¢(F) = E; = ¢(FE); for the only

E1 A1 D1

Fig. 3.5. Uniqueness of foldings.

other possibility is that ¢ or ¢ maps E to D1, contradicting the injectivity of
¢ and 1 on C(c’). And ¢ and ¢ must agree pointwise on E, since they are
already known to agree on all but one vertex of F. O

Remark 3.47. The argument used in the previous two paragraphs will be
called the standard uniqueness argument. It will be used repeatedly as we
proceed. For pedagogical reasons, we prefer not to formalize the argument,
since we think readers will benefit from thinking it through several more times.
The basic idea to remember is the following: If a chamber map is known on
all the vertices of one chamber, then one can often figure out what it has to
do as one moves away from that chamber along a gallery. We have already
used this idea twice before: once in the proof of uniqueness of type functions
(Section A.1.3) and once in the proof of Corollary 1.131.
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Definition 3.48. We will say that the folding ¢ is reversible if the function ¢’
defined above on chambers extends to a folding. Note that if C' and C’ are
as in Lemma 3.46, then we have ¢'(C') = C’; so if ¢ is reversible, then the
extension of ¢’ to a folding is unique: It is the unique folding of X taking C'
to C’. We will use the same symbol ¢’ for this extension, and we will call it
the folding opposite to ¢.

Lemma 3.49. Let C and C' be adjacent chambers with ¢(C") = C. Then
¢ is reversible if and only if there exists a folding taking C to C'. In this
case there is an automorphism s of X such that sl, = ¢ and sl = ¢.
This automorphism is of order 2, and it can be characterized as the unique
nontrivial automorphism of X that fizes C N C' pointwise. Finally, the set of
simplices of X fized by s is the subcompler a N’ of X.

Proof. We have already seen that if ¢ is reversible then the opposite folding ¢’
takes C' to C’. Conversely, suppose there is a folding ¢ such that ¢, (C) = C".
Then we can apply Lemma 3.45 to ¢; to deduce that ¢; determines the same
halves @ and o’ as ¢ (but with their roles reversed, i.e., o’ is the image of ¢).
In particular, ¢ and ¢; are both the identity on H := a N o/, so there is a
well-defined endomorphism s of X' with s|, = ¢1 and s|,» = ¢. Note that H is
the full fixed-point set of s; for if A ¢ H, say A ¢ «, then s(A) = ¢(A) # A.

It is clear that s maps C(«) bijectively to C(a’), and vice versa, so s is
bijective on C(X). Hence s? is bijective on C(X). Since s? fixes C' pointwise,
the standard uniqueness argument is applicable and shows that s? is the
identity. In particular, s is an automorphism.

We now prove that ¢i|c(s)y = ¢, and hence that ¢ is reversible. Since
¢’ and ¢; are both the identity on C(a’), it suffices to consider chambers
D € a. For any such D we have D = s%(D) = ¢(¢1(D)), so ¢1(D) is the
(unique) chamber in o’ that is mapped by ¢ to D. Hence ¢1(D) = ¢'(D) by
the definition of the latter.

Finally, to prove the characterization of s stated in the lemma, suppose
that ¢ is another nontrivial automorphism fixing CNC” pointwise. Then ¢ must
interchange C' and C’; for otherwise ¢ would have to fix them pointwise, and
the standard uniqueness argument would show that ¢ is trivial. Thus t agrees
with s (pointwise) on C, and both are bijective on C(X). We can therefore
apply the standard uniqueness argument yet again to deduce that s =t¢t. 0O

We now introduce geometric language and summarize some of the results
above in this language.

Definition 3.50. A root of X is a subcomplex « that is the image of a re-
versible folding ¢. In view of Lemmas 3.43 and 3.46, the folding ¢ is uniquely
determined by «. The subcomplex o generated by the chambers not in « is
again a root, being the image of the opposite folding ¢'; it is called the root
opposite to a. We will often write o/ = —a. The intersection da := a N —a of
two opposite roots will be called the wall bounding +a.
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Note that we can recover the pair of roots +« from the wall H = d« and,
in fact, from any panel A of X' that is contained in H. To see this, it suffices
to describe the foldings {¢, ¢’} in terms of A: Let C and C5 be the chambers
having A as a face. Note that they are necessarily in opposite roots, because
a and o’ each contain a chamber > A. There is a unique folding ¢, (resp. ¢2)
such that ¢1(C2) = C (resp. ¢2(C1) = C2), and {9, ¢’} = {¢1, d2}.

A wall H determines an automorphism s := sy by Lemma 3.49. It fixes H
pointwise and interchanges the two roots determined by H. For any panel
A € H as in the previous paragraph, we can characterize s as the unique
nontrivial automorphism of X' that fixes A pointwise; in particular, s is the
unique nontrivial automorphism fixing every simplex of H.

Definition 3.51. Given a wall H, we call sy the reflection of X with respect
to H.

Finally, two chambers C, C" € X will be said to be separated by the wall H
if one is in « and the other is in —a. If the two chambers are adjacent, Lemmas
3.43 and 3.46 imply that H is then the unique wall separating them.

In case X' is a Coxeter complex X(W, S), Proposition 3.38 shows that every
pair Cq, Cs of adjacent chambers is separated by a wall. For we have a folding
taking Cs to C7 and also one taking Cy to Cs; these foldings are therefore
opposite to one another by Lemma 3.49 and determine a wall separating
Cy from Cy. If C7 and Cy are C and sC for some s € S, where C is the
fundamental chamber, it is easy to see that the reflection associated to this
wall is given by the action of s. It follows that the reflections of X' determined
by all possible walls are precisely the elements of W that we called reflections
in Chapter 2.

For future reference, let’s explicitly spell out what the roots look like in this
example, starting with the “simple roots.” As in Definition 3.3, we identify
the chambers of X' = X(W, S) with the elements of W. For each s € S there
is then a unique root oy with 1 € a; and s ¢ as. In view of Lemma 3.45, its
set of chambers is given by

Clas) ={w e W |l(sw) > l(w)} . (3.2)

See also Lemma 3.39, where the folding onto o, was explicitly constructed.
The general root, then, is gotten from roots of the form a, by using the
W-action. Explicitly, if we are given a pair of adjacent chambers w,ws with
w € W and s € S, then way is the root containing w but not ws.

The reader who prefers to think of all this in terms of the Tits cone can eas-
ily reformulate the definitions from that point of view. For example, the roots
correspond in the obvious way to the closed half-spaces associated with the
hyperplanes that were called walls in Sections 2.5 and 2.6; see the paragraph
following the statement of Proposition 3.38.
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Example 3.52. Let W be the symmetric group on n letters with its standard
generating set S = {s1,...,8,_1}, where s; is the transposition that inter-
changes i and 7 + 1. In Example 1.119 we studied roots in X' (W, S) from the
point of view of finite reflection groups. We show now how the present com-
binatorial approach leads to the same conclusions. We need some preliminary
observations.

For any permutation 7 € W, let «(7) be the number of inversions of r,
i.e., the number of ordered pairs (,7) with 1 < i < j < n and w(i) > 7(j).
For any 1 <7 <n — 1 one easily checks that

(i) <w(i+1) = u(rs;) =u(m) + 1,
m(i) >7n(i+1) = u(rs;) =u(m) — 1.

Indeed, if one identifies a permutation 7 with the list 7(1),...,m(n), then the
effect of right-multiplying by s; is to interchange the elements in positions @
and ¢ + 1. Our assertions follow at once. One can very quickly deduce that
t(m) = l(m), a fact that we have already proven twice by other methods (see
Example 1.81 and Exercise 1.125). Consequently,

l(ms;) > (7)) <= 7w(i) <mw(i+1). (3.3)

Returning now to roots, we can use (3.3) and (3.2) to get the following
concrete description of the simple root o; := o, for 1 <¢<n —1:

Clag) ={meW |n (@) <n '(i+1)} . (3.4)

To see this, note that

TEq; <= l(s;m) > () by (3.2)
= l(nts) > (Y since I(w) = l(w™1)
— 7 i) <7 i+ 1) by (3.3).

An arbitrary root « has the form waq; for some w € W and 1 < i < i+ 1,
and one checks that its chamber set is {m € W | 7~ (w(i)) < 7 (w(i +1))}.
Now w(z) and w(i + 1) can be any pair of integers 7 # j with 1 < i,j < n.
So we have arrived at the same conclusion as in Example 1.119: X' has one
root a;; for each ordered pair of integers ¢,7 with 1 < 4,5 <n and i # j. Its
chamber set is given by

Cla) ={meW |n @) < '(j)} .

We close this subsection by recording two simple but useful facts about
roots and walls. The first is that one cannot have nested roots in a spherical
Coxeter complex. (In fact, we will see in Section 3.6.8 that this property
characterizes spherical Coxeter complexes.)

Lemma 3.53. If « and 3 are distinct roots of a spherical Coxeter complex X,
then o € 3.
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Proof. This is obvious from the point of view of Chapter 1, where roots cor-
respond to half-spaces whose bounding hyperplanes pass through the origin.
Alternatively, the lemma follows from the fact that « and 3 have the same
finite number of chambers, equal to half the number of chambers in Y. See
Exercise 3.56 for a third proof. a

For the final observation, recall that a subcomplex A’ of a simplicial com-
plex A is said to be full if it contains every simplex of A whose vertices are
all in A'.

Lemma 3.54. Roots and walls in a thin chamber complex X are full subcom-
plexes.

Proof. For roots, this follows from Lemma A.15. For walls the result follows
from the fact that a wall is an intersection of two roots. Alternatively, one can
use the fact that a wall is the fixed-point set of a reflection. a

Exercises

3.55. Let =« be a pair of opposite roots with bounding wall H := a N —a,
and let C, C’ be chambers with C' € a and C’ € —a. Recall that one can speak
of the gallery distance d(—, —) between arbitrary simplices (Section A.1.3).
Prove the following generalization of Lemma 3.45:

a~H={AcX|dAC)<dAC"},
—a~H={A€X|dAC)>dA,C)},
H={AecX|dA,C)=dA,C)} .

3.56. Give a proof of Lemma 3.53 based on the opposition involution (Sec-
tion 1.6.2).

3.57. Let a be aroot and s the associated reflection. If C and C’ are chambers
in «, show that d(C,sC") > d(C,C").

3.58. This is a continuation of Example 3.52. Thus W is the symmetric group
on n letters with its standard generating set S. According to Exercise 1.112
and its solution, X' := X (W, S) is isomorphic to the flag complex X’ of proper,
nonempty subsets of {1,2,...,n}. We wish to describe the roots «;; from this
point of view. Given indices 1 < 1,5 < n with ¢ # j, let oz;j be the root of X’
corresponding to «;; under the canonical isomorphism between X and X'.

(a) Show that the vertices of agj are the proper nonempty subsets X C
{1,...,n} such that je X — i€ X.

(b) Show that the vertices of Jaj; are the proper nonempty subsets X C
{1,...,n}such that i € X <— j e X.

(c) Show that the interior vertices of a;; (i.e., the vertices in aj; \ daj;) are
the proper nonempty subsets X C {1,...,n} such thati € X and j ¢ X.
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3.59. Let (W, S) be a Coxeter system.

(a) Prove the following strong form of the exchange condition: Given w € W,
suppose t is a reflection such that [(tw) < [(w). Then for any decomposi-
tion w = s1 - - - 84, there is an index 4 such that tw = s; -+ §; - - - s4. (Note
that if ¢ € S, this essentially reduces to the exchange condition stated in
Section 2.3.1, except that there we also required the decomposition of w
to be reduced.)

(b) Given w,w’ € W, show that the following conditions are equivalent:

(i) For every decomposition w = 7 - - - sq4, there is an index 4 such that
w =818 84
(ii) For some reduced decomposition w = s --- $4, there is an index ¢
such that w’ = s1---8; - s4.
(iii) I(w’) < l(w), and there is a reflection ¢ such that v’ = tw.

(¢) The Bruhat graph of (W, S) is the directed graph with vertex set W and
with a directed edge w' — w whenever w’ and w satisfy the equivalent
conditions in (b). Show that this graph is acyclic (i.e., there are no di-
rected cycles). Consequently, there is a partial order on W, called the
Bruhat order, with w’ < w if and only if there is a directed path

w/:wo_)wl_)..._)wk:w

from w' to w (k > 0).

(d) Given w € W and s € S, note that sw and w are always comparable
in the Bruhat order: We have w < sw if I(sw) > l(w), and sw < w
otherwise. So the expression “max{sw,w}” is meaningful. Prove now
that if w’ < w then sw’ < max {sw,w} for any s € S. [Note that we
might have sw’ = w = max {sw,w}, so equality can definitely hold. If
l(sw) > l(w), however, then length considerations show that we must
have sw’ < max {sw,w} = sw.]

(e) Given w,w’ € W, show that the following conditions are equivalent:
(i) w" < w in the Bruhat order.
(ii) For every decomposition of w as a product of elements of S, there is
a decomposition of w’ obtained by deleting one or more letters.
(iii) For some reduced decomposition of w, there is a decomposition of w’
obtained by deleting one or more letters.

Remark 3.60. The Bruhat order was introduced by Chevalley in a widely
circulated unpublished manuscript in the late 1950s. It arose in connection
with his study of inclusion relations among “Schubert varieties.” A slightly
edited version of Chevalley’s paper finally appeared in print in 1994; see [82].
In a foreword to that paper, Borel pointed out that the name “Chevalley
order” would be more appropriate than “Bruhat order,” and he proposed
“Bruhat-Chevalley order” as a compromise. This suggestion does not seem
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to have gained wide acceptance, probably because there is too much existing
literature referring to the Bruhat order. See Humphreys [133, Sections 5.9
5.11] for more information about the Bruhat order and for further references.

3.61. Let +a be a pair of opposite roots, let C, C’ be adjacent chambers with
C € a and C' € —a, and let v be the vertex of C not in the common panel
C'NC'. Show that v ¢ —a.

3.62. Let X be the Coxeter complex X (W, S). For any simplex A € X', show
that the stabilizer W4 of A in W is generated by the reflections sy, where H
ranges over the walls containing A.

3.63. You have now seen the standard uniqueness argument applied several
times. Try to write down a lemma that includes all of these applications.
[Warning: Unless you have incredible foresight, you can expect to have to
modify your lemma one or more times as you see further applications of the
argument. In fact, this might even happen in the next few pages.]

3.4.2 Characterization of Coxeter Complexes

It should now be clear that Coxeter complexes possess a good theory of roots.
Our next goal is to show that this property characterizes Coxeter complexes
among the thin chamber complexes. Since we will be considering chamber
complexes that are not necessarily given to us as X(W, S), it is convenient to
slightly expand our previous terminology.

Definition 3.64. A simplicial complex X' is called a Cozxeter complex if it is
isomorphic to X (W, S) for some Coxeter system (W, .S). It is called a spherical
Coxeter complex if it is finite.

This differs from our previous use of the term “Coxeter complex” in that
we do not assume that X = X(W,S). In fact, we do not assume that we are
given a specific isomorphism X =~ Y (W, S) as part of the structure of . In
particular, no chamber of X' has been singled out as “fundamental.”

The following theorem of Tits says, roughly speaking, that Coxeter com-
plexes can be characterized as the thin chamber complexes with “enough”
roots.

Theorem 3.65. A thin chamber complex X is a Coxeter complez if and only
if every pair of adjacent chambers is separated by a wall.

(We can restate the condition of the theorem as follows: For every ordered
pair C,C" of adjacent chambers, there is a folding ¢ of X with ¢(C’") = C.
We do not need to specify here that ¢ is reversible; for this follows, as we saw
above in the case of X' (W, S), from the existence of a folding taking C’ to C'.)



3.4 Roots 139

Proof of Theorem 3.65 (start). We have already proven the “only if” part.
For the converse, assume that every pair of adjacent chambers is separated by
a wall. Choose an arbitrary chamber C, called the fundamental chamber, and
let S be the set of reflections determined by the panels of C. Let W < Aut X
be the subgroup generated by S. We will prove that (W, S) is a Coxeter system
and that X = X(W,S).

We could simply repeat, essentially verbatim, the arguments that led to
the analogous results for finite reflection groups in Chapter 1. For the sake
of variety, however, we will use a different method. This is actually a little
longer, but it adds some geometric insight that we would not get by repeating
the previous arguments. In particular, it gives a simple geometric explanation
of the deletion condition.

We now proceed with a sequence of lemmas, after which we can complete
the proof.

Lemma 3.66. W acts transitively on the chambers of X.

Proof. This is identical to the proof given in Chapter 1 for finite reflection
groups (Theorem 1.69). O

Lemma 3.67. X is colorable.

Proof. Let C be the subcomplex Y<c. It suffices to show that C is a retract
of Y. The idea for showing this is to construct a retraction p by folding and
folding and folding. . ., until the whole complex X has been folded up onto C.

To make this precise, let C4,...,C, be the chambers adjacent to C, and
let ¢1,..., ¢, be the foldings such that ¢;(C;) = C. Let 9 be the composite
¢no---0¢1. We claim that d(C, (D)) < d(C, D) for any chamber D # C. To
prove this, let I': C,C’,..., D be a minimal gallery from C' to D; we will show
that ¢(I") has a repetition. If ¢;(I") has a repetition, we are done. Otherwise,
the standard uniqueness argument shows that ¢; fixes all the chambers of I”
pointwise. In this case, repeat the argument with ¢-, and so on. Eventually
we will be ready to apply the folding ¢; that takes C’ to C. If the previous
foldings did not already produce a repetition in I' , then they have fixed I
pointwise, and the application of ¢; yields a pregallery with a repetition. This
proves the claim.

It follows that for any chamber D, ¢*(D) = C for k sufficiently large. Since
1 fixes C' pointwise, this implies that the “infinite iterate” p := limy_ o ¥ is
a well-defined chamber map that retracts X onto C. g

It will be convenient to choose a fixed type function 7 with S as the set
of types, analogous to the canonical type function that we used earlier in
the chapter. To this end we assign types to the vertices of the fundamental
chamber C by declaring that the panel fixed by the reflection s € S is an
s-panel. We then extend this to all of X' by means of a retraction p of X
onto C. Note that this type function 7 has a property that by now should be
very familiar: For any s € S, the chambers C' and sC' are s-adjacent.
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Lemma 3.68. Foldings and reflections are type-preserving; hence all elements
of W are type-preserving. Consequently, wC and wsC' are s-adjacent for any
weW and s € S.

Proof. A folding ¢ fixes at least one chamber pointwise, so the type-change
map ¢, is the identity (see Proposition A.14). This proves that foldings are
type-preserving, and everything else follows from this. a

If I': Cy,...,C4 is a gallery and H; is the wall separating C;_; from C;,
then, as usual, we will say that Hy,..., Hy are the walls crossed by I'.

Lemma 3.69. If I': Cy,...,Cq is a minimal gallery, then the walls crossed
by I' are distinct and are precisely the walls separating Cy from Cgq. Hence
the distance between two chambers is equal to the number of walls separating
them.

Proof. Suppose H is a wall separating Cy from Cy. Let £« be the correspond-
ing roots, say with Cy € o and Cy € —a. Then there must be some i with
1 < i < d such that C;_1 € o and C; € —a. Since o and —« are convex
(Lemma 3.44), it follows that we have Cy,...,C;—1 € o and C;,...,Cy € —a
In other words, I" crosses H exactly once. Now suppose H is a wall that does
not separate Cy from C,. Then Cy and Cy are both in the same root «, so
the convexity of « implies that I" does not cross H. a

The crux of the proof of Lemma 3.69, obviously, is the convexity of roots,
which in turn was based on the idea of using foldings to shorten galleries.
We can now use this same idea to prove a geometric analogue of the deletion
condition. The statement uses the notion of type of a gallery (Definition 3.22).

Lemma 3.70. Let I" be a gallery of type s = (s1,...,84). If I is not minimal,
then there is a gallery I with the same extremities as I such that I'' has type
s'=(s1,...,8,...,85,...,8q) for some i < j.

Proof. Since I' is not minimal, Lemma 3.69 implies that the number of walls
separating Cy from Cy is less than d. Hence the walls crossed by I' cannot
all be distinct; for if a wall is crossed exactly once by I', then it certainly
separates Cy from Cy. We can therefore find a root « and indices i, j, with
1 <4< j <d,such that C;_; and C; are in a but C € —a for i < k < j; see
Figure 3.6. Let ¢ be the folding with image «. If we modify I" by applying ¢
to the portion Cj, ..., C;_1, we obtain a pregallery with the same extremities
that has exactly two repetitions:

COa"'aCi—17¢(Oi)7"' 7¢(Oj—1)70ja"'7cd-

So we can delete C;_1 and C; to obtain a gallery I of length d — 2. The
type s’ of I'"is (s1,...,8,...,8;,...,8q) because ¢ is type-preserving. O

Lemma 3.71. The action of W is simply transitive on the chambers of X.
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Fig. 3.6. A geometric proof of the deletion condition.

Proof. We have already noted that the action is transitive. To prove that the
stabilizer of C' is trivial, note that if wC' = C' then w fixes C pointwise, since w
is type-preserving. But then w = 1 by the standard uniqueness argument. 0O

It follows from Lemma 3.71 that we have a bijection W — C(X) given
by w — wC'. This yields the familiar 1-1 correspondence between galleries
starting at C' and words s = (sq, ..., $q), where the gallery (C;) corresponding
to s is given by C; := s1---5;C for i = 0,...,d. In view of Lemma 3.68, the
type of this gallery is the word s that we started with. So a direct translation
of Lemma 3.70 into the language of group theory yields the deletion condition
for (W, S). Consequently:

Lemma 3.72. (W, S) is a Cozeter system. O

Remark 3.73. Another way to prove that (W,S) is a Coxeter system is to
verify condition (A) of Chapter 2 by using the action of W on the set of roots
of X. Indeed, Lemma 3.66 implies that every panel of X is W-equivalent to a
face of C. Hence every reflection of X' is W-conjugate to an element of S. This
shows that the “reflections” in W, in the sense of Definition 2.1, are precisely
the reflections of X' obtained from the theory of foldings. We can therefore
identify the set T" used in Chapter 2 with the set of reflections of X', and we
can identify T'x {£1} with the set of roots of X. The action of W on the roots
therefore yields an action of W on T' x {£1} with the properties required for
condition (A). Details are left to the interested reader.

For the next lemma, we need a simplicial analogue of the concept of “strict
fundamental domain” (Definition 1.103).

Definition 3.74. If a group G acts on a simplicial complex A, then we call a
set of simplices A’ C A a simplicial fundamental domain if A’ is a subcomplex
of A and is a set of representatives for the G-orbits of simplices.
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(This yields a strict fundamental domain |A’| for the action of G on the
geometric realization |A|.)

Lemma 3.75. The subcomplex C := X< is a simplicial fundamental domain
for the action of W on X.. Moreover, the stabilizer of the face of C of cotype J
is the standard subgroup Wy of W.

Proof. The first assertion follows from the transitivity of W on the chambers,
together with the fact that W is type-preserving. To prove the second, let A
be a face of C and let 7(A) = S\ J. It follows from the definition of 7 that
J is the set of elements of S that fix A pointwise. In particular, the subgroup
W stabilizes A. To prove that W is the full stabilizer, suppose wA = A. We
will show by induction on I(w) that w € W;. We may assume w # 1, so we
can write w = sw’ with s € § and l(w’) < l(w). Our correspondence between
words and galleries now implies that there is a minimal gallery of the form
C,sC,...,wC. By Lemma 3.69, then, the wall H corresponding to s separates
C from wC.

Let « be the root bounded by H that contains C. Then wC € —a = sa,
so we have w'C € a. The equation wA = A now yields

wA=sAcansa=H,

hence A € H and w'A = A. We therefore have s € J [because s fixes A
pointwise] and w’ € W by induction; thus w = sw’ € W;. O

We have now done all the work required to complete the proof of the
theorem.

Proof of Theorem 3.65 (end). Recall that we have assumed that every pair of
adjacent chambers in X' is separated by a wall, and we are trying to prove that
X is a Coxeter complex. By Lemma 3.72, we have a Coxeter system (W, S),

and Lemma 3.75 easily yields an isomorphism X = X(W,S). Thus X is a
Coxeter complex. O

Example 3.76. Let X' be the plane tiled by equilateral triangles. It is geo-
metrically evident that we can construct, for any adjacent chambers C,C’, a
folding taking C” to C. So X' is indeed a Coxeter complex, as claimed in Ex-
ample 3.7. To see that the Coxeter group W is the one given in that example,
one can compute the orders of pairwise products of fundamental reflections,
or one can observe that the link of every vertex is a hexagon.

The last assertion of Lemma 3.69 is the analogue of a fact that we used
many times in Chapter 1, giving two different ways of computing the distance
between two chambers. The final result of this section generalizes this to
arbitrary simplices. Recall that one can talk about the gallery distance d(A, B)
between arbitrary simplices (Section A.1.3).
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Definition 3.77. We say that a wall H strictly separates two simplices if
they are in opposite roots determined by H and neither is in H. We denote
by S(A, B) the set of walls that strictly separate two simplices A and B.

Proposition 3.78. For any two simplices A, B in a Coxeter complex X, we
have

d(A,B) = |S(A, B)| ,

i.e., d(A, B) is equal to the number of walls H that strictly separate A from B.
More precisely, the walls crossed by any minimal gallery from A to B are
distinct and are precisely the walls in S(A, B).

Proof. A proof from the point of view of the Tits cone was sketched in Sec-
tion 2.7. Here is a combinatorial proof: Let I': Cy, ...,y be a minimal gallery
from A to B. Then it is also a minimal gallery from Cy to Cy, so it crosses d
distinct walls, and these are the walls separating Cj from Cy. It is immediate
that S(A4,B) C S(Co,Cq), so I' crosses all the walls in S(4, B). We must
show, conversely, that every wall H crossed by I is in S(A, B). Suppose not.
Then there is a root o bounded by H that contains both A and B. But then
we can get a shorter gallery from A to B by applying the folding of X’ onto a.
This contradicts the minimality of I". O

We close this section by making some remarks that will be useful later,
concerning links. Given a simplex A in a Coxeter complex Y| recall that its
link ¥ := lky A is again a Coxeter complex (Proposition 3.16). We wish to
explicitly describe its walls and roots. Suppose H is a wall of X' containing A,
and let +a be the corresponding roots. Then one checks immediately from
the definitions that H' := H N X’ is a wall of X’/, with associated roots
+a' :=+an X

Proposition 3.79. The function H — H' := HN X' is a bijection from the
set of walls of X containing A to the set of walls of X'. Similarly, the function
aw— o = anX is a bijection from the set of roots of X whose boundary
contains A to the set of roots of X'.

Proof. Tt suffices to prove the first assertion. Since a wall of X’ is completely
determined by any panel that it contains, we can reformulate the assertion as
follows: For any panel P’ of X/, there is a unique wall H of X with A € H
and P’ € H N X’. Equivalently, there is a unique wall of X containing the
simplex P := P’ U A. [The equivalence follows from the fact that walls are
full subcomplexes by Lemma 3.54.] Since P is a panel of X, the proposition
is now immediate. O

Remark 3.80. Recall that we may identify X’ with X4 via B’ — B'U A
for B’ € X', and B — B~ A for B € Y5 4. If we make this identification,
then the bijections in the proposition are still given by intersection. In other
words, if H is a wall of X containing A and H’' := H N %', then
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{BEZZA‘(B\A)EH/}:HQZZA,

and similarly for roots.

Exercises
Assume throughout these exercises that 3 is a Coxeter complex.

3.81. Let H be a wall with associated roots +«, and let A be an arbitrary
simplex. Show that A € H if and only if there are chambers C,C’ > A with
Ceaand '€ —a.

3.82. With the notation of the previous exercise, if A € H show that the
chambers C,C’ can be taken to be adjacent. Thus there is a panel P in X
such that A < P € H.

3.83. Assume that X' is infinite.

(a) Show that X' has infinitely many walls.

(b) Assume that X' is drreducible (i.e., its Coxeter diagram is connected).
For every vertex x of Y, show that there are infinitely many walls not
containing z. [See Lemma 2.92 for the same result expressed in terms of
the Tits cone.]

3.5 The Weyl Distance Function

In this section we introduce an important tool, whose usefulness will become
more and more apparent as we develop the theory of buildings. Let X be a
Coxeter complex. Choose a type function on X' with values in a set .S, which
is not necessarily given to us as the set of generators of a Coxeter group.

Definition 3.84. The Cozeter matriz of X is the matrix M = (m(s,t))
defined by

s, tes

m(s,t) := diam(lk A) ,

where A is any simplex of cotype {s,t} (see Remark 3.21). Note that if
Y = X (W,S) for some Coxeter system (W, S) and we use the canonical type
function, then M is the Coxeter matrix of (W, S). It follows that M is well de-
fined in general. The Weyl group of X' is defined to be the Coxeter group W,
defined by M. It has generating set S and defining relations (st)™() = 1.

Note that if X is given to us as X(W, S) (with its canonical type function),
then W), is the group W that we started with. The following result is therefore
not surprising:

Proposition 3.85. There is a type-preserving isomorphism X = X (W, S),
where X (W, S) is given its canonical type function with values in S.
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Proof. By definition, there is a simplicial isomorphism ¢: X =~ (W' S)
for some Coxeter system (W', S’). Let ¢.: S — S’ be the induced type-
change bijection (Proposition A.14), where X (W’ S’) is given its canonical
type function. For any s,t € S and any simplex A of cotype {s,t}, the image
A’ = ¢(A) has cotype {s',t'}, where s’ := ¢,(s) and ¢ := ¢.(t). Since ¢
induces an isomorphism lky A =% lky, A’, it follows that m(s,t) = m/(s',t'),
where m/(—,—) denotes the Coxeter matrix of (W', S’). Hence ¢, extends
to an isomorphism (W, S) = (W', S’) of Coxeter systems, which in turn
induces an isomorphism v: X(Wy, S) == (W', S’). Note that the induced
type-change bijection 1, : S — S’ is equal to ¢,. It follows that the composite
isomorphism ¢! o ¢: X =2 (W), S) is type-preserving. O

This motivates the following terminology.

Definition 3.86. Let (W, S) be a Coxeter system with Coxeter matrix M.
We say that a Coxeter complex X' is of type (W, .S) (or of type M) if X' comes
equipped with a type function having values in S such that the Coxeter matrix
of X is M or, equivalently, such that there is a type-preserving isomorphism
Y =~ Y(W,S). We can then identify W with the Weyl group Wy of X.

We now wish to define a function 6: C(X) x C(X) — Wy, called the Weyl
distance function, such that

d(Cy, Cy) = 1(5(Ch, Cs)) (3.5)

for any two chambers C4, Cs. Intuitively, §(C1, Cs) is something like a vector
pointing from C; to Cs; it tells us the distance from C to Cy as well as what
“direction” to go in to get from C; to Cs.

To define 6(Cy,Cs), choose an arbitrary gallery from Cj to Cs, let
(s1,82,...,84) be its type, and set

5(01702) = 8189---80 € War . (3.6)

To see that the right-hand side is independent of the choice of gallery, we
may assume that X = X(W,S) with its canonical type function. Then we can
identify C(X) with W, and a gallery of type (s1,...,sq) from a chamber w;
to a chamber wy has the form wy, w181, ..., w181 -+ Sq = we. Hence the right-
hand side of (3.6) is equal to w; 'ws, which is indeed independent of the choice
of gallery. See Figure 3.2 for an example, where 6(C, D) = utstu = ustsu.
This discussion gives us a concrete interpretation of § as a “difference” map
W x W — W, sending (w1, ws) to wy *wy, when X = (W, S). Equivalently,

§(w1C,wyC) = wi twy (3.7)
where C' is the fundamental chamber. In particular,

0(C,wC)=w . (3.8)
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One can also deduce from the discussion that for arbitrary X, galleries from
Cy to Cy are in 1-1 correspondence with decompositions of 6(Cq,Cs), and
minimal galleries correspond to reduced decompositions.

Finally, returning to an arbitrary Coxeter complex of type (W, .S) we show
that § extends in a natural way to a function on arbitrary pairs of simplices.
Let A be a simplex of cotype J and let B be a simplex of cotype K (J, K C S).
Consider the set of elements 6(C, D), where C' and D are chambers with C > A
and D > B. We claim that this set is a double coset W;wWg. To see this,
we may assume Y = X(W,S) with its canonical type function. Thus A is a
coset w1 Wy, B is a coset woWp, C corresponds to an arbitrary element of A,
and D corresponds to an arbitrary element of B. The set of elements 6(C, D)
is then the set of differences A™'B := {a™'b|a € A, b€ B}, which is the
double coset (wi W)~ (weWi) = Wyw, "was W, whence the claim.

We can now define 6(A, B) to be the element of minimal length in the
double coset (see Proposition 2.23). Note that pairs C, D with C > A, D > B,
and 6(C, D) = 6(A, B) are precisely those pairs such that there is a minimal
gallery from A to B of the form

C=0Cy,....,.Ch=D.
We have proved the following;:

Proposition 3.87. Let X be a Coxeter complex of type (W,S), and let A
and B be arbitrary simplices. Then there is an element §(A, B) € W such
that

0(A,B) =6(Co,Cy)

for any minimal gallery Cy, ..., C) from A to B. In particular,
d(A,B) = l((S(A,B)) . O

Note that reduced decompositions of §(A, B) are not necessarily in 1-1
correspondence with minimal galleries from A to B, since in general there is
more than one possible Cyy that can start such a gallery. The reader can easily
find examples of this in Figure 3.2. We will get a clearer understanding of this
phenomenon in the next section.

Exercise 3.88. Prove the following strong version of the triangle inequality:
Given three chambers Cy, Cy, C3, we have 5(01, 03) = 5(01, 02)5(02, 03)

3.6 Products and Convexity
This section gives analogues for Coxeter complexes of some of the results of

Chapter 1 on hyperplane arrangements. The results should all be believable
because of this analogy, but there are technicalities. The reader anxious to get
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to buildings may want to skip ahead to Chapter 4 and return to the present
section as needed.

Throughout this section, X' denotes an arbitrary Coxeter complex in the
sense of Definition 3.64, and H denotes its set of walls (Definition 3.50). For
each pair o of opposite roots, we arbitrarily declare one of them to be
positive and the other negative. The most common convention is to choose a
“fundamental chamber” C' and declare a root to be positive if it contains C.

3.6.1 Sign Sequences

Let A be a simplex of X and let H be a wall with its associated pair of
roots +a, where « is the positive one. We have three possibilities: A is in «
but not —a, A is in —a but not «, or A is in H. We set oy (A4) = +, —, or 0,
accordingly. The resulting family

is the sign sequence of A.

Remark 3.89. If X' = X(W,S), the sign sequence just defined can be iden-
tified with the sign sequence introduced in our study of the Tits cone (Sec-
tion 2.6).

The first observation is that the sign sequence determines the face relation
in the expected way. As in Definition 1.20, we order sign sequences coordi-
natewise, with the convention that 0 < + and 0 < —.

Proposition 3.90. Given simplices A, B € X', we have B < A if and only if
o(B) < o(A). In particular, A = B if and only if 0(A) = o(B), i.e., a simplex
18 uniquely determined by its sign sequence.

Proof. If one wants to use the Tits cone, the result is already contained in
Section 2.6 (see the paragraph following Definition 2.79). But here is a purely
combinatorial proof.

Suppose B < A. Then o(B) < o(A), since every root containing A must
contain B (roots are subcomplexes). Conversely, suppose o(B) < o(A). Then
Proposition 3.78 implies that d(A, B) = 0. In other words, there is a cham-
ber C having both A and B as faces. We now show that every vertex v of B
is also a vertex of A. Let P be the panel of C' not containing v, and let H be
the wall containing P. Then v ¢ H (Exercise 3.61), so oy (B) # 0 and hence
om(A) # 0. Thus A is not a face of the panel P, which means that v is a
vertex of A. O

Exercise 3.91. Show that a simplex A is a chamber if and only if oy (A4) # 0
for all H € H.

We will make extensive use of sign sequences, primarily in connection
with products (Section 3.6.4 below). But first we pause to give two easier
applications, the first involving convexity and the second involving supports.
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3.6.2 Convex Sets of Chambers

Definition 3.92. Let A be a chamber complex, and let C := C(A) be its set
of chambers. A subset D C C is called convex if it is nonempty and for all
D, D’ € D, every minimal gallery in C from D to D’ is contained in D.

For example, C(«) is a convex subset of C(X) for any root a of our Coxeter
complex ¥ (Lemma 3.44). We can get further examples from this one, since
an intersection of convex sets is convex (if it is nonempty). For example:

Proposition 3.93. For any simplez A € X, the set C(X)>a of chambers
having A as a face is convex. More concisely, residues are convez.

Proof. Proposition 3.90 implies that C(X)> 4 is an intersection of convex sets
of the form C(«) for various roots «, one for each wall H such that o (A4) # 0.
This proves the first assertion, and the second assertion is simply a restatement
of the first (see Corollary 3.17). O

We will study convexity systematically in Section 3.6.6, but we give here
one further result, since we have just been talking about intersections of roots.

Proposition 3.94. Let D be a nonempty set of chambers in X.. Then D is a
convex subset of C(X) if and only if D is an intersection of sets C(«) for some
family of roots a.

Proof. Tt suffices to prove the “only if” part. The proof is essentially the same
as the solution to Exercise 1.65 [see also Proposition 2.97], but for variety,
we will say it in a slightly different way that will yield extra information (see
Exercise 3.97).

By a boundary panel of D we mean a panel A such that one of the two
chambers having A as a face is in D and the other is not. Let these two
chambers be denoted by D, D’, with D € D, and let & = a4 be the root
containing D but not D’. Assume now that D is convex. We claim that D C a.
For suppose E € D but E ¢ «. Then d(FE,D) = d(E,D’) + 1 by Lemma 3.45,
and hence there is a minimal gallery from E to D passing through D’. By
convexity this implies D’ € D, contradicting our assumptions.

To complete the proof we will show that

D= ﬂC(OéA) 5
A

where A ranges over the boundary panels of D. If C' is a chamber of X' not in D,
we must find a boundary panel A with C ¢ a4. Choose D € D at minimal
distance from C, and let D, D', ..., C be a minimal gallery from D to C. Then
D' ¢ D,so A:= DnNDis a boundary panel. Since d(C,D’) < d(C, D), we
have D ¢ a4 by Lemma 3.45, as required. g
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Exercises

3.95. Give an alternative proof of Proposition 3.93 using properties of reduced
words in Coxeter groups.

3.96. Let « be a root, and let C' be a chamber not in « but adjacent to a
chamber in a. Show that C(«) is maximal among the convex sets of chambers
not containing C'.

3.97. Let D be a nonempty convex set of chambers in Y, and consider the
expression D = (1, C(aa) that occurred in the proof of Proposition 3.94.
There may be redundancy in this expression because a root « could be a4
for more than one boundary panel A. To remedy this, we index a4 by the
wall H := aaq N —ay4, said to be a wall of D. We then set ay = ay; it is
independent of the choice of A because, of the two roots bounded by H, it is
the one containing D. In summary, we have

D= ﬂ C(OzH) s
H
where H ranges over the walls of D.

(a) Show that this expression is irredundant, in the sense that if any C(agy)
is deleted, then the resulting intersection is strictly bigger than D.

(b) Let Hy and Hs be distinct walls of D, let A; be a boundary panel of D
contained in H; for ¢ = 1,2, let ; be the corresponding root oy, = a4,,
and let D;, D! be the chambers > A;, with D; € D. Show that

d(D}, D)) = d(D1,D3) + 2 ;
in other words, there is a minimal gallery of the form D, Dy, ..., Dy, D},
where the inner part is a minimal gallery from D; to Dy in D.
3.6.3 Supports

Definition 3.98. The support of a simplex A € Y| denoted by supp A, is the
intersection of the walls containing A.

We record two results about supports that will be needed later. They both
have easy proofs using the Tits cone (which we leave to the interested reader),
and they also have easy combinatorial proofs that we will give.

Proposition 3.99. A is a mazximal simplex of its support.

Proof. If A < B in X, then Proposition 3.90 implies that there is a wall H
with o (A) =0 and oy (B) # 0; hence B ¢ supp A. O
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Proposition 3.100. If ¥ = X(W,S) with its natural W-action, then the
stabilizer W4 of any simplex A fizes supp A pointwise, i.e., it fixes every
simplex of supp A. Moreover, supp A is the full fized-point set of W 4.

Proof. This is an immediate consequence of the fact that W4 is generated by
the reflections that fix A, i.e., the reflections sy with A € H; see Exercise 3.62.
O

There is a lot more to say about supports, but it fits most naturally into
the setting of convex subcomplexes, which we cannot treat properly until we
have introduced products.. We will therefore leave the subject now and return
to it in Section 3.6.6.

Exercises

3.101. If ¥ = X(W, S) and we identify X' with the set of cells in the Tits cone,
how is the present definition of support related to the support as defined in
Section 2.77

3.102. What is the support of a vertex if X is 1-dimensional?

3.6.4 Semigroup Structure

Given A, B € X, we wish to define their product AB as in Section 1.4.6. Thus
AB should be the simplex with sign sequence given by

ou(A) ifou(A)#0,

O’H(B) lf JH(A) :0, (39)

for any wall H € H. Of course, one has to prove the existence of such a
simplex.

The existence proof was quite easy in the setting of Chapter 1, and we
have already given the analogous easy proof in general using the Tits cone
(Proposition 2.82, part (1)). But we will give an independent proof here, which
is purely combinatorial. It is longer, but it is instructive, and it will generalize
to buildings in the next chapter. In the course of the proof we will see that the
chambers having AB as a face are precisely those that can start a minimal
gallery from A to B, as we would expect from Exercise 1.62 [and Section 2.7].
This completely characterizes the desired AB, since a simplex is determined
by the set of chambers having it as a face; see, for instance, Corollary 3.17 or
Exercise 3.10.

The existence of the desired AB is quite easy to prove if B is a chamber
(in which case (3.9) forces AB to be a chamber), so we begin with that case.
The result should be compared with Proposition 1.40.
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Proposition 3.103. Given a simplex A and a chamber C, there is a (unique)
chamber AC such that for any H € 'H,

ou(A) ifop(A) #0,

on(C) if op(A) =0. (3.10)

O'H(AC) = {
It has A as a face, and among the chambers having A as a face, it is the

unique one at minimal distance from C. Every minimal gallery from A to C
starts with AC.

Proof. Choose a minimal gallery I': Cp,...,Cyqy = C from A to C. Given
H e H, it oy(A) # 0, then oy (Cpy) = og(A), since Cp > A. If oy (A) =0,
then H ¢ S(A, C) [see Definition 3.77], so Proposition 3.78 implies that I" does
not cross H; hence oy (Cy) = oy (C). Thus Cj is the desired chamber AC'. The
last two assertions of the proposition follow from the existence proof, since
we started with an arbitrary minimal gallery from A to C'. Alternatively, the
second-to-last assertion follows from (3.10) as in the proof of Proposition 1.40,
and the last assertion is simply a restatement of it. O

Definition 3.104. Given simplices A, C' € X with C a chamber, their product
is the chamber AC described in Proposition 3.103. The product is also denoted
by proj 4 C and called the projection of C' onto A.

Equation (3.10) leads to the following important property of AC, which
we call the gate property.

Proposition 3.105. For any simplex A and any chambers C, D with D > A,
d(C,D) =d(C,AC) + d(AC, D) . (3.11)

Proof. Partition the walls H separating C from D into two subsets according
to whether or not o (A) = 0. Those with o (A) = 0 are precisely the walls
separating AC' from D, while those with o (A) # 0 are the walls separating
AC from C. Equation (3.11) now follows from the fact that we can compute
distances by counting separating walls (Lemma 3.69). O

We already saw the gate property in the context of hyperplane arrange-
ments in Chapter 1; see Exercise 1.42 and Figure 1.6. As we noted there, it
says that C> 4 is a “gated subset” of the metric space C = C(X) in the sense
of Dress—Scharlau [97].

We now proceed to the existence of AB for arbitrary B. We will use ideas
borrowed from the Dress—Scharlau theory, with some simplifications achieved
in the present context by the use of sign sequences. Our first goal will be to
find a simplex AB such that the chambers > AB are precisely those that can
start a minimal gallery from A to B. We will then be able to check that (3.9)
holds.

Let C = C(X), and for any simplex A, let C4 € C be the set C>4 of
chambers > A. For any two simplices A, B, let C4 g C Ca be the set of
chambers that can start a minimal gallery from A to B.
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Proposition 3.106.

(1) Ca B is the image of the projection map Cp — Ca given by D — AD.

(2) The projection maps Ca.p = Cp.a, given by C — BC and D — AD
(C €Cap, DeCp a), define mutually inverse bijections.

(3) Given any minimal gallery Cy,...,Cy from A to B, we have Cy = AC
and C; = BCy. In other words, Co and C; correspond to one another
under the bijections in (2).

Proof. A minimal gallery Cy, ..., C; from A to B is also minimal from A to C,
so Cy = AC; by Proposition 3.103. Similarly, C; = BCy. This proves (3) and
shows that C4, p is contained in the image of the projection map Cp — Ca,
which is part of (1). To prove the opposite inclusion, consider any D € Cg.
Then one sees by checking sign sequences that S(AD, B(AD)) = S(A, B);
hence d(AD, B(AD)) = d(A, B) by Proposition 3.78. Thus there is a minimal
gallery from A to B starting with AD. This proves (1). It follows from (1)
that the projection maps do define maps Ca,p = Cp, 4, and it is easy to check
(using sign sequences) that these maps are inverse to one another, whence (2).

O

We need one more simple observation before we can complete the analysis
of CA,B .

Lemma 3.107. The projection C — C4 takes adjacent chambers to chambers
that are equal or adjacent. Consequently, Ca g is a connected subset of the
chamber graph of X, i.e., any two elements of Ca,p can be connected by a
gallery in Ca B.

Proof. The first assertion is immediate if one calculates projections in terms
of sign sequences (equation (3.10)). The second assertion now follows from
part (1) of Proposition 3.106 because Cp is connected (by Proposition 3.16 or
Proposition 3.93). O

We can now prove the main result of this subsection. Choose a type
function on X with values in a set S, so that we can define the Weyl
group W = Wy and the Weyl distance function § as in Section 3.5. Recall
that the abstract set S then becomes a set of generators of W.

It will be convenient to use residue terminology in what follows. Recall
that by Corollary 3.17, the residues are the sets of the form C4, one for each
simplex A. The main point in what follows is to show that C4 p is again a
residue, so that we can define AB to be the corresponding simplex.

Theorem 3.108. Let A be a simplex of cotype J, let B be a simplex of co-
type K, and let w = §(A, B). Then Ca p is a residue of type J; := JNwKw™!.
In other words, there is a simplex AB of cotype Ji such that Co.p = Cap,
i.e., the chambers that can start a minimal gallery from A to B are precisely
those having AB as a face. Moreover, the sign sequence of AB is given by
equation (3.9).
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Proof. To show that C4 p is contained in a residue of type J; it suffices, by the
lemma, to prove that any two adjacent chambers in C4 p are .Jj-equivalent.
Let C1,Cy € Ca,p be s-adjacent, and let D; = BC; and Dy = BC5. Then
D, and Dy are distinct by part (2) of Proposition 3.106 and are adjacent by
Lemma 3.107. Let ¢ € S be the element such that D; and D, are t-adjacent.
For ¢ = 1,2 there is a minimal gallery from A to B starting with C; and,
necessarily, ending with D; (see part (3) of Proposition 3.106). So 6(Cy, D) =
w = §(Cq, D). Computing 6(Cy, D) in two different ways, we conclude that
sw = wt. See Figure 3.7, which should be viewed as a schematic picture of
the chamber graph. We have s € J because C1,Cs > A, and similarly ¢t € K.

CA CB

Fig. 3.7. sw = wt.

So s =wtw ! € JNwKw™!, whence C; and Cs are Ji-equivalent.

To show that C4 p is an entire residue of type Ji, it suffices to prove that
if Ch isin C4,p and (Y is s-adjacent to C; for some s € Jy, then Cy isin C4, p.
Write sw = wt with ¢ € J, and let D; = BCy. Then 6(Cy, D1) = sw = wt;
see Figure 3.8. Since decompositions of 6(Cq, D;) correspond to galleries from

Cy Dy
CA CB

Cs

Fig. 3.8. 0(C2, D1) = sw.

C5 to Dy, it follows that there is a chamber D5 such that §(Cy, D) = w and
d(D2, Dy) = t. In other words, we have achieved the situation in Figure 3.7,
where Dy € Cp because t € K. Since d(Cy, Do) = l(w) = d(A, B), it follows
that Cy € C4,p, as required.

Now let AB be the simplex such that C4 p = Cap. We must calculate the
sign sequence of AB. We have AB > A since Cap C Ca;s0 og(AB) = og(A)
if og(A) # 0. Suppose og(A) = 0. Then H ¢ S(A, B), so the minimal
galleries I": Cy, ..., C) from A to B do not cross H, i.e., Cy and C; are on the
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same side of H. If o7 (B) # 0, it follows that oy (Cy) = o (B). In other words,
every chamber C' > AB satisfies o (C) = o (B); hence og(AB) = o (B)
by Exercise 3.81. If o (B) = 0, on the other hand, then I" is in one root «
associated to H, and we can fold onto —a to get another minimal gallery
from A to B. Thus there are elements of C4 g = Cap on both sides of H, and
o (AB) = 0. This proves (3.9). O

Definition 3.109. Given simplices A, B € X, their product is the cham-
ber AB described in Theorem 3.108 and characterized by equation (3.9). The
product is also denoted by proj, B and called the projection of B onto A.

As in Section 1.4.6, equation (3.9) has the following consequence:

Corollary 3.110. The product of simplices is associative. Hence X is a semi-
group. O

Example 3.111. Let C' and C’ be adjacent chambers. Let v, v’ be the vertices
of C,C’ that are not in the common panel, as in Figure 3.9. Consider the

Fig. 3.9. Adjacent chambers.

product vv’. We show by two different methods that vv’ < C. Method 1:
There is a minimal gallery C,C’ from v to v’ since v and v’ are not joinable.
[They have the same type.] Hence vv’ is a face of the starting chamber C.
Method 2: Use sign sequences. Assume for simplicity (and without loss of
generality) that oy (C) = + for every wall H, so that oy (v) > 0 for all H.
We then have o (C") = + for all H except the one containing P := C' N C’;
hence o (v') > 0 for all H except the one containing P. Since oy (v) = + for
that exceptional wall, it follows that og(vv’) > 0 for all H and hence that
v’ < C.

We close this subsection by recording some connections between the poset
and semigroup structures on X as in Proposition 1.41 and Exercise 1.44. The
proofs are easy via sign sequences and are left to the reader

Proposition 3.112. Let A and B be arbitrary simplices in X.
(1) A < AB, with equality if and only if supp B < supp A.



3.6 Products and Convexity 155

(2) A< B if and only if AB = B.

(3) supp A = supp B if and only if AB = A and BA = B.

(4) If supp A = supp B, then left multiplication by B and A defines mutually
inverse bijections X'> 4 = X>p. In particular, dim A = dim B.

(5) AB and BA have the same support, which is the intersection of the walls
containing both A and B. O

Corollary 3.113. For any simplices A, B € X, dim AB = dim BA. Conse-
quently, dim AB > max {dim A, dim B}.

Proof. The first assertion follows immediately from parts (5) and (4) of the
proposition. For the second, we have dim AB > dim A trivially because A <
AB, and similarly dim BA > dim B; now use the fact that dim BA = dim AB.

O

Exercises
3.114. Use Theorem 3.108 to give a new proof of Lemma 2.25.

3.115. Show that every root is a subsemigroup, and hence every intersection
of roots is a subsemigroup. In particular, this applies to the support of any
simplex (Definition 3.98).

3.116. Show that (finitely many) simplices A, B,...,C are joinable if and
only if they commute with one another in the semigroup X, in which case
their product is their least upper bound (see Exercise 1.43). Deduce, as in the
proof of Proposition 1.127, that X' is a flag complex.

3.117. Given simplices A1, Ag, B € X with A; < As, show that d(A;,B) <
d(As, B), with equality if Ay > A;B. In particular, d(4, B) = d(AB, B) for
any two simplices A, B.

3.118. Figure 3.9 suggests that vv’ = C. Give examples to show that this is
not necessarily the case. For instance, vv’ could be a vertex or an edge.

3.119. Recall that the link L, := lky A of any simplex A is again a Coxeter
complex; hence it has a semigroup structure. Is it a subsemigroup of X7 If
not, how is the product on L 4 related to the product in X7

The remaining exercises are intended to show how the use of products
can sometimes replace arguments based on the Tits cone. The intent of the
exercises, then, is that they should be solved combinatorially, without the Tits
cone. Given a chamber C' and a panel P of C, the wall containing P will be
called a wall of C. Thus every chamber has exactly n + 1 walls if dim X' = n.

3.120. Fix a chamber C and let H¢ be its set of walls.

(a) Show that C' is defined by H¢; in other words, if D is a chamber such
that o (D) = oy (C) for all H € He, then D = C.
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(b) Suppose A is a simplex such that oy (A) < oy (C) for all H € He. Show
that A < C.

(c) If A and B are faces of C, show that A < Bif and only if o (A) < oy (B)
for all H € He.

(d) If A < C, show that A is defined by H¢; in other words, if B is a simplex
such that oy (B) = oy (A) for all H € He, then B = A.

3.121. (a) Let C be a chamber, and let s and ¢ be reflections with respect to
two distinct walls of C, denoted by Hg and H;. Let m be the order of st,
and assume m > 3. If D is another chamber that also has H, and H; as
two of its walls, show that either H; and H; both separate C from D or
else neither of them separates C' from D.

(b) Give an example to show that we cannot drop the assumption that m > 3
in (a).

(c) Generalize (a) as follows. Let Hy,..., Hy be walls of a chamber C' such
that the corresponding reflections s; generate an irreducible Coxeter
group. If D is another chamber having Hi,..., H; as walls, show that
either every H; separates C from D or else no H; separates C' from D.

3.122. Use the previous exercise to give a combinatorial proof of the following
fact, which we have proven earlier by different methods: If (W, S) is irreducible
and wSw~! = S for some w # 1 in W, then W is finite and w is the longest
element. [We gave two proofs of this for finite reflection groups, one algebraic
and one geometric; see the proof of Corollary 1.91. And we generalized the
algebraic proof to the infinite case in the proof of Proposition 2.73. The point
of the exercise is that we now have the tools to generalize the geometric proof.]

3.6.5 Applications of Products

In this brief subsection we use products to prove two results that will be
needed later. Both proofs make use of the following lemma.

Lemma 3.123. Let ¥ = X (W, S), and let W4 for A € X be the stabilizer of
A in W. Then for any two simplices A, B € X we have Wap = W4 N Wpg.

Proof. Tt is clear that W4 N Wgp < Wap and that Wap < Wy. [For the
latter, note that A < AB and W is type-preserving.] So all that remains
to show is that Wap fixes B. This follows from Proposition 3.100 because
B € supp BA = supp AB. g

We can now prove a finiteness result that, a priori, is far from obvious:

Proposition 3.124. Let A and B be arbitrary simplices of X (W, S). Choose
a chamber C' > AB. Then every minimal gallery from A to B is equivalent
under WaNWpg to one that starts with C'. In particular, there are only finitely
many (Wa N Wpg)-orbits of minimal galleries from A to B.
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Proof. By the lemma and Exercise 3.13, W4 N Wpg is transitive on C4p. This
implies the first assertion. For the second assertion, we need only recall that a
minimal gallery from A to B starting with C' must end with BC| so there are
only finitely many of these, one for each reduced decomposition of §(C, BC')
[=4d(A4, B)]. O

Our next result is taken from Tits [247, Lemma 12.12].

Proposition 3.125. Let X be an irreducible Coxeter complex, and let H be
a wall of X. Then X contains a chamber C that is disjoint from H, in the
sense that none of the vertices of C' are in H. More generally, every simplex A
disjoint from H is a face of a chamber disjoint from H.

Note that we cannot drop the irreducibility assumption. For example, sup-
pose X is of type A; x Ay, i.e., X is the poset of cells associated with the
reflection group {+1} x {£1} acting on R x R. Then there are two walls and
four chambers, and each chamber has a nontrivial face in each wall.

Proof of the proposition. Let A be disjoint from H, and choose a maximal
simplex B > A disjoint from H. Clearly B is not the empty simplex, since H
cannot contain every vertex of Y. We will show that B is a chamber. Let 7 be
a type function on X' with values in a set S. By irreducibility of X, it suffices
to show that m(s,t) = 2 for all s € 7(B) and t € S\ 7(B). [This will imply
that 7(B) = S, so that B is a chamber.]

Choose a panel P > B of cotype t, and let C' and C’ be the chambers
having P as a face. Let v (resp. v’) be the vertex of C (resp. C’) not in P.
Thus 7(v) = 7(v") = t. Let F (resp. F’) be the panel of C (resp. C') of
cotype s. Thus the vertex of C' not in F', which is the same as the vertex of C’
not in F’, has type s and hence is a vertex of B. Note further that v and v’
are both joinable with B, so we must have v,v’ € H by the maximality of B.
Figure 3.10 summarizes some of the notation. We have drawn the picture so

B

c c’

/

v F Foov

Fig. 3.10. m(s,t) =2; e =5, 0 =t.

as to suggest that supp F = supp F”, since the proof will show that this is in
fact the case.
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We now assume, without loss of generality, that ¥ = X(W,S) with its
canonical type function and that C is the fundamental chamber. Then ¢ is
the fundamental reflection that fixes P = C N C’, and s is the fundamental
reflection that fixes F. Consider the product vv’. By Example 3.111 we have
vv’ < C. We also have vv' € H because v and v’ are both in H. Since the
vertex of C' not in F' is in B and hence not in H, it follows that vv’ < F.

Thus vv’ is fixed by the reflection s. In view of Lemma 3.123, it follows
that s fixes v'. But s also fixes ' N F’, which contains every vertex of F’
except v’. So s fixes F’. On the other hand, we have F’ = tF, so the reflection
fixing F” is the conjugate tst of s. Thus tst = s and m(s,t) = 2. O

Note that a great deal of the proof remains valid if we drop the irreducibil-
ity assumption, but the conclusion becomes more complicated. Namely, we can
no longer prove that B is a chamber, but we can say that 7(B) is a union of
one or more connected components of the Coxeter diagram. This yields the
following more precise result:

Proposition 3.126. Let X be a Coxeter complex with a type function . If
H is a wall of X and A is a simplex disjoint from H, then there is a simplex
B > A disjoint from H such that 7(B) is a union of connected components of
the Coxeter diagram of X. O

This has the following immediate consequence, which we will have occasion
to use in Chapter 7:

Corollary 3.127. Let X be a Coxeter complex, and let r be the minimal car-
dinality of a connected component of its Coxeter diagram. If H is a wall of X
and A is a simplex disjoint from H, then there is a simplex B > A disjoint
from H such that rank B > r. Equivalently, there is a chamber C > A such
that the maximal face of C' in H has codimension > r. O

Example 3.128. Suppose the Coxeter diagram of X' has no isolated nodes.
Then r > 2, and the proposition implies the following: Given a wall H and a
vertex v ¢ H, there is an edge containing v that is disjoint from H. Equiva-
lently, there is a chamber containing v and having no panel in H.

3.6.6 Convex Subcomplexes

We have already introduced some convexity concepts, but with the aid of
products, we are now ready to be more systematic. We begin by discussing
convexity for chamber subcomplezes (Definition A.12).

Definition 3.129. Let A be a chamber complex and let A’ be a chamber
subcomplex. We say that A’ is a conver subcomplex of A if its set of cham-
bers C(4') is a convex subset of C(A), i.e., if every minimal gallery in A
joining two chambers of A’ is contained in A’.
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In this subsection we will be concerned exclusively with the case that A is
a Coxeter complex Y. In this case, as we will see, convexity is closely related
to the product in X. The following lemma gives the first hint of this.

Lemma 3.130. Let X be a Coxeter complex.

(1) Every convex chamber subcomplex of X is a subsemigroup of X.

(2) Let X be a subcomplex of X that is a subsemigroup. If X' NC(X) is a
convex subset of C(X), then X is a convex chamber subcomplex of X.

(3) Let X' be an intersection of conver chamber subcomplexes of X. If X'

contains at least one chamber, then X' is a conver chamber subcomplex
of X.

Proof. (1) Let X’ be a convex chamber subcomplex of X'. Given A, B € X', we
must show that AB € X’. Choose a chamber C € X" with C' > B. By checking
sign sequences, one sees that AB < AC; so it suffices to prove AC € X'. To
this end choose a chamber D > A and note that by the gate property (3.11),
there is a minimal gallery from D to C passing through AC'. This gallery is
contained in X’ by convexity; hence AC € Y.

(2) The only thing that needs to be proved is that X’ is a chamber sub-
complex of X. The convexity assumption implies that X’ NC(X) is nonempty
and that any two of its elements can be joined by a gallery in X’. So we need
only show that every maximal simplex A of X’ is a chamber of Y. Choose an
arbitrary chamber C' € X' NC(Y). Then we have A < AC € X', so A = AC
and A is indeed a chamber of Y.

(3) Tt is obvious that C(X’) is a convex subset of C(X). Moreover, (1)
implies that X’ is an intersection of subsemigroups and hence is itself a sub-
semigroup. The result therefore follows from (2). O

We can now give several characterizations of convex chamber subcom-
plexes.

Theorem 3.131. Let X be a Cozeter complex and X' a subcomplex containing
at least one chamber. Then the following conditions are equivalent:

(i) X7 is a convex chamber subcomplez of X.

(ii) X’ is an intersection of roots.

(i) X' is a subsemigroup of X.

(iv) Given A,C € X" with C' a chamber of X, every minimal gallery from A
to C in X is contained in X'.

Proof. The equivalence of (i) and (ii) is almost immediate from Proposi-
tion 3.94, but one must be a little careful: Suppose (i) holds, and let X"
be the intersection of all roots containing X’. Then X" is a chamber subcom-
plex of X' by part (3) of the lemma, and C(X") = C(X") by Proposition 3.94.
So X" = X' and (ii) holds. Conversely, (i) = (i) by part (3) of the lemma
again, since roots are convex chamber subcomplexes by Lemma 3.44.
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We already know from part (1) of Lemma 3.130 that (i) = (iii), and
it is easy to check that (iv) == (i). So it remains to prove (iii) = (iv).
Suppose (iii) holds, and let A,C be as in (iv). Consider a minimal gallery
A < Cy,Cq,...,Cp = C from A to C. Recall from Proposition 3.103 that
Cy = AC. Moreover, if A; is the common panel between C;_; and C; for
i =1,...,n, then we have C; = A;C, Cy = A3C, and so on, as one sees
by checking sign sequences or by using the fact that C is closer to C; than
to C;_1. Since X is a subsemigroup and a subcomplex, it follows inductively
that all C; € 3. O

Remark 3.132. The equivalence between (i) and (iii) has an intuitive inter-
pretation. In the setting of hyperplane arrangements, for example, knowing
the product AB of two cells A, B is equivalent to knowing the beginning of
a line segment joining a point of A to a point of B. An analogue of Theo-
rem 3.131 in that context was given in Exercise 1.68 [see also Proposition 2.97].
In our present combinatorial setting, we can therefore think of products as a
substitute for line segments (or geodesics). Of course minimal galleries also
provide a substitute for geodesics, and it is reassuring that they yield the same
notion of convexity for chamber subcomplexes.

Examples 3.133. (a) Given two chambers C, D, we define their convezr hull
I'(C, D) to be the smallest convex chamber subcomplex containing C' and D
or, equivalently, the intersection of all roots containing C' and D. One easily
checks by counting separating walls (cf. Exercise 1.66) that the chambers
E € I'(C, D) are precisely those such that

d(C,D) =d(C,E) +d(E, D) |,

i.e., they are the chambers that can occur in a minimal gallery from C' to D.
See Figure 3.11 for an example. Note that in Figure 3.11, one could also speak
of the convex hull of C' and D in the usual sense of Euclidean geometry, and
this is strictly smaller than the geometric realization of I'(C, D). Whenever
this could lead to confusion, we will call I'(C, D) the combinatorial convex
hull of C' and D.

(b) For any simplex A € X, the star of A, denoted by st A or stx A, is the set
of simplices joinable to A. It consists of all the chambers > A and their faces,
S0 it is a convex chamber subcomplex of X' by Proposition 3.93.

(¢) The concept of “convex hull” that we introduced in (a) generalizes in an
obvious way. Given an arbitrary collection of simplices containing at least
one chamber, we define their convezr hull to be the smallest convex chamber
subcomplex containing them or, equivalently, the intersection of all roots con-
taining them. For example, one can speak of the convex hull I'(4,C) of a
simplex A and a chamber C. It is an intersection of roots, where there is one
root for each wall that does not strictly separate A from C.
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Fig. 3.11. The (combinatorial) convex hull of C' and D.

(d) Here is a specific instance of (c¢) that will be useful in the theory of build-
ings. Suppose X is spherical. Let P and P’ be opposite panels, and let C’ be
a chamber having P’ as a face. Then the wall of X containing P and P’ is
the only wall that does not strictly separate P from C’, so the convex hull
I'(P,C") is the (unique) root containing P and C’. See Figure 3.12.

p_C

P

Fig. 3.12. The convex hull of P and C’ is a root.

We turn now to convexity for subcomplexes that are not necessarily cham-
ber subcomplexes. It is not clear that there is a sensible way to define this
concept in the generality of arbitrary chamber complexes. For Coxeter com-
plexes, however, Theorem 3.131 and Remark 3.132 motivate the following
generalization of convexity to arbitrary subcomplexes:

Definition 3.134. A subcomplex X’ of a Coxeter complex X' is called a con-
vex subcomplex if it is a subsemigroup of X.
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Remark 3.135. Further motivation for the definition is provided by the the-
ory of the Tits cone (Sections 2.6 and 2.7). If X' = X(W,S), then the Tits
cone is a convex cone X in a real vector space V of dimension |S|. It is de-
composed into conical cells by a collection of hyperplanes, one for each wall
of Y. These cells are in 1-1 correspondence with the simplices of X, with a
dimension shift. Thus the cell {0} corresponds to the empty simplex of X
the cells that are rays correspond to the vertices of X, and so on. If X is a
subcomplex of X' and X’ is the union of the corresponding cells in X, then X’
is convex in the sense of Definition 3.134 if and only if X’ is a convex subset
of V. (See Definition 2.95 and the discussion leading up to it.)

The main results about convex subcomplexes are given in the following
two propositions:

Proposition 3.136. If X’ is a convex subcomplex of X, then X’ is a chamber
complex in which every panel is a face of at most two chambers.

Proposition 3.137. Let X' be a subcomplex of a Coxeter complex X. Then
the following conditions are equivalent:

(i) X7 is conver.
(ii) X’ is an intersection of roots.
(iil) X is an intersection of convex chamber subcomplezes.

It is trivial that an intersection of convex subcomplexes is convex. So the
essential content of Proposition 3.137 is the implication (i) == (ii). This has
a concrete interpretation in terms of sign sequences. It says that every convex
subcomplex is defined by conditions of the form oy (A4) > 0, oy (A) <0, or
o (A) = 0, where there is at most one such condition for each H € H. We
will discuss the proofs of the propositions after a remark and a few examples.

Remark 3.138. A useful consequence of Proposition 3.137 and Lemma 3.54
is that convex subcomplexes of a Coxeter complex are always full subcom-
plexes. One can also derive this directly from the definition of “convex sub-
complex,” together with Exercise 3.116.

Examples 3.139. (a) Every wall is an intersection of two roots and hence is
convex.

(b) The support of any simplex is an intersection of walls and hence is convex.

(¢) The convex hull of a collection of simplices is the smallest convex sub-
complex containing them or, equivalently, the intersection of all roots con-
taining them. For example, we can speak of the convex hull I'(A, B) of two
simplices A, B. It is defined by one condition for each wall H ¢ S(A, B): If
or(A) = op(B) = 0, the condition is o = 0; otherwise, o (A) and o (B)
are either both > 0 or both < 0, and the condition is oy > 0 or g < 0
accordingly. The reader is encouraged to draw some examples of I'(A, B)
in Figure 3.11. See Exercises 3.148 and 3.149 below for more information
about I'(A, B).
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Propositions 3.136 and 3.137 both have fairly short proofs based on the
Tits cone, which we have already given in the optional Section 2.7 (see Propo-
sitions 2.96 and 2.97). We wish to give combinatorial proofs also. The treat-
ment that follows is based largely on [8, Section 1]. We begin with some easy
consequences of the definition.

Lemma 3.140. Let X' be a convex subcomplex of 3.

(1) All mazimal simplices of X' have the same dimension.
(2) If A is a mazimal simplex of X', then X' C supp A.

Proof. (1) If A and B are maximal simplices of X, then AB = A and BA = B,
so A and B have the same dimension by Corollary 3.113.

(2) For any simplex B € X/, we have AB = A by maximality of A; hence
supp A = supp AB = supp BA (see Proposition 3.112(5)). Since B < BA, it
follows that B € supp A. O

This has some useful consequences for supports:

Corollary 3.141.

(1) For any simplex A € X, we have dim A = dim(supp A).
(2) Let A and B be simplices in X with dim A = dim B. If B € supp A4, then
supp A = supp B.

Proof. (1) The subcomplex supp A is convex, so all of its maximal simplices
have the same dimension by the lemma; now apply Proposition 3.99.

(2) B is a maximal simplex of supp A, so supp A C supp B by the lemma.
The opposite inclusion is immediate from the definition of “support.” O

Lemma 3.142. If X’ is a convexr subcomplex of X, then any two mazimal
simplices A, B € X' can be connected by a X' -gallery.

Proof. We argue by induction on d(A, B), where the latter denotes the gallery
distance between A and B in X (see Section A.1.3). If d(A, B) = 0, then A
and B are joinable in Y, and one sees immediately by using sign sequences
that AB = BA (see Exercise 3.116); hence A = B by maximality, and there
is nothing to prove.

Assume now that d(A, B) > 0, and choose a minimal X-gallery Cy, C1, ...
from A to B. Then A £ Cy, so A’ := AN C; has codimension 1 in A,
and d(A’, B) < d(A, B). Now observe that A’B is again a maximal simplex
of X’ since dimA’B = dim BA’ = dim B, where the first equality follows
from Corollary 3.113. Moreover, d(A’B, B) = d(A’, B) by Exercise 3.117, so
d(A’B, B) < d(A, B). By the induction hypothesis, there is a X’-gallery from
A’'B to B; since A and A’ B have the common codimension-1 face A’, it follows
that there is a X’-gallery from A to B. O
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A/
A FaB
HnNnXY

Fig. 3.13. A wall separating A from B.

One can understand the proof intuitively by considering the wall H of X/
separating Cy from Cy. Then A’ € H, so we can think of H N Y/ as a “wall
of A in X'” separating A from B; see Figure 3.13. Readers of Section 2.7
will note that this intuition can be made precise via the theory of hyperplane
arrangements.

Lemma 3.143. Let x be a vertex of X. Then suppx is 0-dimensional and
either has x as its only vertex or else has exactly two vertices x,y.

The combinatorial proof of this is somewhat tricky. To avoid disrupting
the flow of ideas, we postpone the proof to the next subsection.

Remarks 3.144. (a) Lemma 3.143 is obvious from the point of view of the
Tits cone. [The vertex = corresponds to a cell that is a ray, and suppz cor-
responds to the cells in the line spanned by that ray.] Moreover, one obtains
from this point of view a sharper result: If supp x contains a vertex y # x,
then the sign sequence of y is opposite to that of = (i.e., og(y) = —on(x)
for every wall H). In more geometric language, this says that every wall of X
either contains both x and y or else strictly separates = from y. We will say
that = and y are opposite vertices in this situation.

If X is spherical, then every vertex x has an opposite vertex —z. It turns
out that this is essentially the only situation in which opposite vertices exist.
See Proposition 2.91 and Exercise 3.156.

(b) It may seem counterintuitive at first that a 2-vertex 0-dimensional simpli-
cial complex, which is not even connected, can be viewed as convex. But the
interpretation in terms of the Tits cone explains this, since, as we just saw
in (a), that O-dimensional complex corresponds to a line in a vector space.
And a line is indeed convex in the usual sense.



3.6 Products and Convexity 165

We can now prove our two propositions:

Proof of Proposition 3.136. Lemmas 3.140 and 3.142 show that X’ is a cham-
ber complex, so it remains to show that every X’-panel P is a face of at
most two X’-chambers. Let A be a X’-chamber having P as a face. Since
XY’ C supp A and the two have a common maximal simplex, they have the
same dimension. We may therefore assume that X’ = supp A. Moreover, we
may replace X by lky, P (see Proposition 3.79) and thereby reduce to the case
that P is the empty simplex and A is a vertex. The result now follows from
Lemma 3.143. o

Proof of Proposition 3.137. It is immediate that (i) = (i) = (i),
so it suffices to show that (i) = (ii). Assume that X’ is convex. Given
B € X such that B ¢ X', we must find a root o of X that contains X’ but
not B. Choose a X'-chamber A that minimizes d(A, B), the latter being the
gallery distance in X as in the proof of Lemma 3.142. Then X’ C supp A by
Lemma 3.140, and the two have the same dimension. If B ¢ supp A, then we
are done because supp A is an intersection of roots. So assume B € supp A.

Next, note that d(A4, B) > 0, since otherwise we would have AB = BA,;
this would imply B < AB = A, contradicting the assumption that B ¢ Y.
Now apply the proof of Lemma 3.142 to the convex subcomplex supp A. We
obtain a codimension-1 face A’ of A such that A’B is a (supp A)-chamber
with d(A’B, B) < d(A, B). Moreover, we get a wall H of X' such that A’ € H
and H € S(A, B) (see Proposition 3.78). This is illustrated in Figure 3.13,
which should now be viewed as a picture of supp A. Since o (A'B) = o (B),
we conclude that H € S(A’B, B). To complete the proof, we show that X’ is
contained in the root o bounded by H that contains A.

It suffices to show that « contains every X’-chamber D. Consider the
product A’D € X’. Then A’D is a chamber of X’ (and supp A), since
dim A’D > dim D = dim X~/ = dimsupp A. Now A and A’B are the only two
(supp A)-chambers having A’ as a face by Proposition 3.136, and A’B ¢ X’
by the choice of A and the fact that d(A’'B, B) < d(A, B); so we must have
A'D = A. Thus oy (D) = oy (A), and hence D € a. O

Exercises
We continue to assume that X' is a Coxeter complex.

3.145. Find the convex hull of C' and D in Figure 3.2.

3.146. This is a variant of Example 3.133(d). Suppose that X is spherical and
set d := diam X. If C' and D are chambers such that d(C, D) = d — 1, show
that I'(C, D) is a root.

3.147. If ¥ is spherical, show that every root is a maximal (proper) convex
subcomplex.
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3.148. Show that I'(A, B) is the intersection of the subcomplexes I'(C, D)
with C € C4,p and D = BC.

3.149. Show that AB is a maximal simplex in I'(A, B). Show further that it
is the unique maximal simplex of I'(A4, B) having A as a face. So we have yet
another characterization of AB.

3.150. Show that the convex hull of a finite set of simplices is finite.

3.151. What is the convex hull of a single simplex? Show directly, without
using Proposition 3.137, that it is an intersection of roots.

3.152. Given chambers C, D € X, let I(C, D) be the intersection of all roots o
with C' € o and D ¢ «. Prove that I(C, D) is a convex chamber subcomplex
of X whose chambers are those E € C(X) such that

d(D,E) = d(D,C) + d(C,E) .

Intuitively, these are the chambers that one can reach by moving on a geodesic
from D to C and continuing past C.

3.153. Let X’ be a convex subcomplex of X and H a wall not containing Y.

(a) Show that dim(H NX’) < dim X".
(b) Now specialize to the case that X’ = supp A for some simplex A. If H
contains a codimension-1 face P of A, show that H Nsupp A = supp P.

3.154. Let C' be a chamber and A a face of C. Show that supp A is the
intersection of the walls of C' containing A.

3.155. Let (W, S) be a Coxeter system and let X' = X(W, S) with its natural
W-action. Given A € X, let W, be the stabilizer of A and let N4 be the
normalizer of W, in W. Show that N4/W,4 acts simply transitively on the
set of simplices in supp A having the same type as A.

3.156. (a) Suppose X is infinite and irreducible (i.e., its Coxeter diagram is
connected). If z is a vertex of X, show that = does not have an opposite
vertex as defined in Remark 3.144(a). Thus the support of x consists
only of x and the empty simplex. [Proposition 2.91 proves this result
from the point of view of the Tits cone. The present exercise is asking for
a combinatorial proof.]

(b) In the general case, decompose X as a join X * --- x X, according to
the connected components of the Coxeter diagram (Exercise 3.30). Show
that a vertex x has an opposite vertex y if and only if the factor X;
containing x is spherical.

3.157. Let (W, S) be a Coxeter system, and let J C S satisty |J| = |S| — 1.
Let Nj be the normalizer of Wy in W.
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(a) Show that W has index 1 or 2 in N;.
(b) Show that W; = N if (W, S) is irreducible and W is infinite.

3.158. Assume that X = X (W, S), and identify X with the set of cells in the
Tits cone. Let X'y be the set of simplices in X with finite stabilizer. (Equiva-
lently, X'¢ is the poset of finite standard cosets ordered by reverse inclusion,
or the set of simplices with finite link, or the set of simplices whose link is
a sphere.) It follows trivially from Lemma 3.123 that X'y is a subsemigroup
of X. Does this yield an alternative proof that X is convex in Lemma 2.867

3.6.7 The Support of a Vertex

In this subsection we give a combinatorial proof of Lemma 3.143, which was
needed in the combinatorial proofs of Propositions 3.136 and 3.137. This turns
out to be less straightforward than one would expect, given how obvious the
result is from the point of view of the Tits cone.

Let X be a Coxeter complex. We start by considering 1-dimensional convex
subcomplexes of Y and using products to construct “geodesic paths.” In the
following lemma, d(—, —) denotes gallery distance in X.

Lemma 3.159. Let X’ be a 1-dimensional convex subcomplex of X, and let x
and y be two distinct vertices of X'. For any edge F of X' such that yz < F,

there is a sequence * = xg,...,T, = y of vertices of X' with the following
properties:
(1) E; :={xi_1,2;} is an edge of X' for all1 <i<n, and E, = F.
) yxl < F for alli.

(2
(3) B =x;1F and yE; = F for all1 <i <n.

(4) (:cz, y) =d(x;, F) =d(Fiz1, F) = d(E;iy1,y) for all 0 <i < n.

(5) d(x;,y) < d(xi—1,y) for all 0 <i < n.

Proof. Note that the construction of the z; is forced on us by properties
(1)=(5): We must have Ey = «F by (3), and then 27 must be the vertex
of F, different from = = zg. If x1 = y, we are done; otherwise, we must
have F5 = x1F, and so on. The essential content of the lemma, then, is that
this process terminates and yields a sequence of vertices in X’ satisfying all
the stated properties. We now give the formal proof, arguing by induction
on d(x,y).

If d(xz,y) = 0, then z and y are joinable in X. The edge joining them
is the product xy = yx (Exercise 3.116), and this is in X’ by convexity. So
F = {z,y} and we can take n = 1, zyp = x, and z; = y. Properties (1)—(5)
hold trivially.

Suppose d(z,y) > 0. Set Fy := zF and note that this is an edge of X’.
Denote by x; the vertex of F; different from z = xg. We have yFy = yazF = F,
since yz < F, and then yz; < yE; = F. Thus (2) and (3) hold for i = 1. We
can now prove (4) for i = 0 by three applications of Exercise 3.117. Indeed,
the three equations
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d(z,y) = d(z, F) = d(Ey, F) = d(E1, y)

follow, respectively, from the relations yx < F, xF = E;, and yFE; = F. So
we will be set up to apply the induction hypothesis as soon as we verify that
d(z1,y) < d(x,y). (Note that x; # y, since d(z,y) > 0.)

Let Cy,C4,...,C,y, be a minimal gallery from x to y in Y. We can take
Cy > FEi, since F; = F > xy. Then minimality of the gallery implies that x
cannot be a vertex of Cy, so x1 must be a vertex of C;. Thus d(z1,y) < m =
d(x,y), and we can apply the induction hypothesis to 1 and y to complete
the proof. a

We can now prove Lemma 3.143. Recall the statement of the lemma: If
is a vertex of the Coxeter complex X, then supp x is 0-dimensional and either
has x as its only vertex or else has exactly two vertices.

Proof. We already know the first assertion (Corollary 3.141), so we need only
show that supp x cannot have three vertices. We argue by induction on dim X/,
which may be assumed > 0. Suppose y is a vertex different from x in supp z, so
that zy = z and yzr = y. Let X’/ be the support of an edge containing z. Then
X" is a 1-dimensional convex subcomplex of X containing x and y. Applying
the induction hypothesis to links as in the proof of Proposition 3.136, we
conclude that X’ is a 1-dimensional chamber complex in which every panel
is a face of at most two chambers. In other words, X’ is either a circle or a
(possibly infinite) line segment.

Suppose now that there is a third vertex z € supp z. If X’ is a line segment,
we may assume that z lies between = and y. Since there is no backtracking in
the path z = zg,21,...,2, = y constructed in Lemma 3.159, this path must
be the unique geodesic between x and y in X’. We therefore have z = z; for
some 0 < i < n. Now d(Eiq1,y) = d(zi,y) < d(x;—1,y) = d(E;,y). But E;q
and FE; are edges containing x; = z = zy, where the second equation comes
from the assumption that z € suppz = suppy. So d(Fit+1,y) = d(z,y) =
d(E;,y). This contradiction shows that z cannot exist if X’ is a line segment.
(Side remark: It also follows from this argument that « and y are endpoints
of X))

Now suppose that X’ is a circle. Then y is contained in precisely two edges
F and F’ of X’. By Lemma 3.159, these two edges (which contain yz = y)
give rise to two paths P: Ey,...,E,_1 = Fand P': Ej,...,E/,_, = F’, both
starting at  and ending at y. Since there is no backtracking in these paths,
their union must be the full circle X’. By the same argument as in the previous
paragraph, no interior vertex of P or P’ can be in supp ¥, again contradicting
the existence of z. O

Remarks 3.160. (a) This combinatorial proof of Lemma 3.143 is an instruc-
tive illustration of the use of products, but it is considerably trickier than
the (almost trivial) proof using the Tits cone. This illustrates the power and
usefulness of the Tits cone.
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(b) Although we have succeeded, with some effort, in giving a combinatorial
proof of Lemma 3.143, we do not know how to prove combinatorially the
stronger result stated in Remark 3.144(a).

Exercise 3.161. Let x, y, and X’ be as in the proof. Thus either X’ is a circle
or else X' is a line segment with x and y as endpoints. The first case occurs
whenever & and y are opposite vertices of a spherical Coxeter complex. Give
an example to show that the second case can occur also.

3.6.8 Links Revisited; Nested Roots

We continue to denote by X' an arbitrary Coxeter complex. In this final sub-
section we use the theory of products and convexity as an aid in proving that,
as we stated before Lemma 3.53, X' contains nested roots if it is infinite. The
proof will use some facts about links that will also be needed in Chapter 7,
so we begin with those.

Fix a simplex A of X, and set X’ := lky A. Recall from Proposition 3.79
that we have a bijection H — H’' := H N X’ from the set of walls of X
containing A to the set of walls of X, Similarly, there is a bijection a — o’ :=
anX’ from the set of roots o of X with A € da to the set of roots of X’. Using
products, one can describe the inverses of these bijections. The full result is
stated in Exercise 3.168 below. We will need only part of this result, which
we give in the following lemma:

Lemma 3.162. Let A and X’ be as above, let o be a root of X with A € da,
and let o/ :=anNX'. Then

Cla)={CeC(X)| (AC N A)ed} .

Proof. Let C be a chamber of Y. Using the convexity of roots and Remark
3.80, we have

Cea = ACeanXsy = (ACNA)ed.
Similarly,
Ce—-a = ACe-anXsy = (ACNA)€e (—a) =-d.
The lemma follows at once. O

This has the following immediate consequence. Note that the “if” part
would not be obvious without the lemma.

Corollary 3.163. Let « and (8 be roots of X with A € Ja N IB, and let
o :=anX and B :=6NX". Then a C B if and only if o/ C 3. O

We turn now to nested roots. We say that a pair of distinct roots {«, 3}
is mested if « C B or B C a.
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Lemma 3.164. Let o and 8 be roots of X with o # +0. If the pairs {«, 8}
and {—a, B} are both non-nested, then daN OB is a chamber complex of codi-
mension 2 in X, and ks A is spherical for every mazimal simplex A € 0andS.

Proof. The hypothesis says that the intersection (+a)N(£3) contains a cham-
ber for each of the four possible choices of sign. Considering a minimal gallery
from a chamber in N to a chamber in «N—0, we obtain a panel P € aNJf.
Similarly, there is a panel Q € (—a) N JF. Recall now that 95 is a chamber
complex (see Proposition 3.136) and that P and @ are maximal simplices in
it. We can therefore choose P and @ to be df-adjacent [consider a d3-gallery
joining them]. Then P N @ is in da N 9 and has codimension 2 in X, so
codim(0andp) < 2. Equality must hold, since da and 9F cannot have a panel
of ¥ in common. And da N df is a chamber complex by Proposition 3.136
again. Finally, let A be a maximal simplex of da N dB. Then X' := lky A is
a rank-2 Coxeter complex, so either it is spherical or else it is a triangulated
line. Let o := anX’ and ' := N X’. Then the pairs {o/, 5’} and {—o’, 5’}
are both non-nested by Corollary 3.163, so X/ cannot be a line and is therefore
spherical. a

For any root a, we denote by s, the reflection with respect to da.

Proposition 3.165. Let a and (8 be roots of X with o # +(3. Then the fol-
lowing conditions are equivalent:

(i) Either {«, B} is nested or {—a«, B} is nested.
(ii) The product sosp has infinite order.
(iil) For every simplex A € da N AP, the link ks A is not spherical.

Proof. (i) = (ii): Suppose one of the pairs is nested, say o G 3. Setting
w = S453, we then have

wa G wf = s5,(—P) G sal—a) =a.
There is therefore an infinite descending chain

a2wa Quwia -,
implying (ii).

(i) = (iii): We may assume that X' = X(W, S). The element s,s3 € W
fixes every simplex A € da N 9B, so (ii) implies that the stabilizer W, of A
in X is infinite. Since lkx; A is the Coxeter complex associated to the Coxeter
group Wy, it follows that the link is not spherical.

(iii) == (i): This follows from Lemma 3.164. O

Corollary 3.166. X' has nested roots if and only if it is not spherical.

Proof. We already know that spherical Coxeter complexes do not have nested
roots (Lemma 3.53). If X' is not spherical, on the other hand, then it has a
pair of reflections whose product has infinite order by Proposition 2.74, so it
has a pair of nested roots by Proposition 3.165. a
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As a second corollary, we can give a new proof of a special case of Propo-
sition 2.87, and we can even give a sharper result in this case:

Corollary 3.167. If (W,S) is a Coxeter system and W' < W is a finite
subgroup generated by two reflections, then W' is contained in a finite parabolic
subgroup of W of rank 2.

Proof. Let X := X(W,S). Combining the proposition with Lemma 3.164,
we see that W’ stabilizes a codimension-2 simplex with spherical link. The
stabilizer of this link is a finite parabolic subgroup of W of rank 2. O

Exercise 3.168. Let A and X’ be as in the beginning of this subsection.
(a) Let H be a wall of X containing A, and let H' := H N X’. Then

H={BeX|(AB~A)eH'} . (3.12)
(b) Let @ be a root of X' with A € da, and let o := o N X’. Then

a={BeXY|(AB\A)ed}. (3.13)
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Buildings as Chamber Complexes

As we stated in the introduction, there is more than one approach to buildings.
The point of view in this chapter is that buildings are simplicial complexes
satisfying certain axioms. These are quite easy to state, but not so easy to
motivate. We will not attempt to explain how Tits came up with them now,
but we will make some historical remarks in Chapter 6 that should make the
definition seem less mysterious.

The terminology used in this subject is attributed by Tits to Bourbaki
(see [248]). In order to understand where it comes from, one should inter-
pret the word “chamber” that we have been using as meaning “room.” Thus
Coxeter complexes are divided up into rooms by walls, and they are therefore
called “apartments.” Buildings, then, are complexes that are built by putting
apartments together. We now state the axioms, which specify the rules for
putting the apartments together.

4.1 Definition and First Properties

Definition 4.1. A building is a simplicial complex A that can be expressed
as the union of subcomplexes X' (called apartments) satisfying the following
axioms:

(BO) Each apartment X is a Cozeter complex.

(B1) For any two simplices A, B € A, there is an apartment X containing
both of them.

(B2) If X and X' are two apartments containing A and B, then there is an
isomorphism X — X' firing A and B pointwise.

(Recall that a map fixes a simplex A pointwise if it fixes every vertex of A.)

Note that we can take both A and B to be the empty simplex in (B2);
hence any two apartments are isomorphic. This implies, in particular, that
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A is finite-dimensional, its dimension being the common dimension of its
apartments. Note also that A is a chamber complex. For if C' and C’ are
maximal simplices, then they are also maximal simplices of some apartment 3/
by (B1), so they have the same dimension and are connected by a gallery.

Any collection A of subcomplexes Y satisfying the axioms will be called
a system of apartments for A. Thus a building is a simplicial complex that
admits a system of apartments. Note that we do not require that a building be
equipped, as part of its structure, with a specific system of apartments. The
reason for this is that it turns out that a building always admits a canonical
system of apartments. And in the important special case that the apartments
are finite Coxeter complexes, it is even true that there is a unique system
of apartments. We will prove both of these assertions later in the chapter
(Sections 4.5 and 4.7, respectively).

Remark 4.2. The complexes we have called buildings are sometimes called
weak buildings in the literature, the term “building” being reserved for the
case in which A is thick. This means, by definition, that every panel is a
face of at least three chambers. With our definition, by contrast, a building
can even be thin. Indeed, a Coxeter complex is a thin building with a single
apartment. If we confine ourselves to the thick case, then axiom (B0) can be
considerably weakened. Namely, we need only assume that the apartments 3/
are thin chamber complexes, and it then follows from (B1) and (B2) that they
are in fact Coxeter complexes. The proof of this will be given in Section 4.13.

Remark 4.3. Axiom (B2) can be replaced by the following weaker axiom,
which is simply the special case of (B2) in which one of the two simplices is a
chamber. Some care is needed in the precise formulation, since in the absence
of (B2), we do not yet know that all apartments have the same dimension;
thus we need to avoid ambiguity in our use of the word “chamber.”

(B2') Let X and X' be apartments containing simplices A,C, where C is
a chamber of X. Then there is an isomorphism X == 3’ firing A and C
pointwise.

To see that this implies (B2) (in the presence of (B0) and (B1)), consider
an arbitrary pair of simplices A, B contained in two apartments X and X'.
Choose a chamber C > A in ¥ and a chamber D > B in Y, and choose an
apartment X’ containing C and D. Assuming (B2’), we have isomorphisms

PRSI USRS )

where the first isomorphism fixes C' and B pointwise and the second iso-
morphism fixes A and D pointwise. The composite is then an isomorphism
¥~ ¥ fixing A and B pointwise, so (B2) holds.

Remark 4.4. Axiom (B2'), in turn, is equivalent to the following axiom,
which appears at first glance to be stronger:
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(B2") Let X and X' be two apartments containing a simplex C that is a
chamber of Y. Then there is an isomorphism X == X' fizing every simplex
in XNX.

For suppose that (B2') holds, and let X, X’, and C be as in (B2”). Then
we have, for each A € ¥’ N Y, an isomorphism ¢4: X =~ Y fixing A and C
pointwise. But our standard uniqueness argument (Section 3.4.1) shows that
there is at most one isomorphism from X to X’ fixing C' pointwise. So all
the ¢4 are equal to a single isomorphism ¢, which therefore fixes the entire
intersection X N X’.

Remark 4.5. One can strengthen (B2”) still further, by dropping the as-
sumption that the two apartments have a common chamber. In other words,
the isomorphisms in (B2) can always be taken to fix every simplex in the
intersection. We will be able to prove this later in the chapter; see Proposi-
tion 4.101 and Exercise 4.108.

Assume, for the remainder of this section, that A is a building and that
A is a fixed system of apartments.

Proposition 4.6. A is colorable. Moreover, the isomorphisms X =% X' in
aziom (B2) can be taken to be type-preserving.

Proof. Fix an arbitrary chamber C, and assign types to its vertices arbitrarily.
If X is any apartment containing C, then [since Coxeter complexes are col-
orable] the assignment of types on C extends uniquely to a type function 75
of X. For any two such apartments X, >/, the type functions 7y and 75 agree
on X N X’; this follows from the fact that 75/ can be constructed as 75 o ¢,
where ¢: X' =2 3 is the isomorphism fixing X’ N X’ as in (B2"). The various
Ty therefore fit together to give a type function 7 defined on the union of
the apartments containing C. But this union is all of A by (B1), so the first
assertion of the proposition is proved.

To prove the second assertion, it suffices to consider the isomorphisms
that occur in axiom (B2'). But such an isomorphism is automatically type-
preserving, since it fixes a chamber pointwise. a

Choose a fixed type function 7 on A with values in a set S. In view of
the essential uniqueness of type functions, nothing we do will depend in any
serious way on this choice. For any apartment X, the function 7 yields a
Cozeter matric M := (m(s,t))s +cg» defined by
m(s,t) ;= diam(lky A) ,

where A is any simplex in X of cotype {s,t} (see Section 3.2). Since any
two apartments are isomorphic in a type-preserving way, M does not depend
on

Proposition 4.7. All apartments have the same Cozeter matrixz M. g
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We will therefore call M the Cozeter matriz of A. Similarly, we can speak
of the Cozxeter diagram of A; it is a graph with one vertex for each s € S.
Strictly speaking, we should be talking about the Coxeter matrix and diagram
of the pair (A, A); but we will show in Section 4.4 that the matrix and diagram
are really intrinsically associated to A and do not depend on the system of
apartments A.

The importance of the Coxeter matrix, of course, is that it completely
determines the isomorphism type of the apartments. Let’s spell this out in
detail: Let W) be the Coxeter group associated to M, with generating set .S
and relations (st)™(*) = 1. In the language of Section 3.5, Wy, is the Weyl
group of every apartment. Let X, be the Coxeter complex X(Wj, S). It has
a canonical type function with values in S. We can now state the following
consequence of Propositions 4.7 and 3.85:

Corollary 4.8. For any apartment X, there is a type-preserving isomorphism
Y = Xy Thus X, endowed with the type function T|x, is a Cozeter complex
of type M, or of type (W, S), in the sense of Definition 3.86. O

Finally, we record one more simple consequence of the axioms. Recall that
the study of local properties of Coxeter complexes consisted of a single result,
which said that the link of a simplex in a Coxeter complex is again a Coxeter
complex (Proposition 3.16). The situation for buildings is similar:

Proposition 4.9. If A is a building, then so is Ik A for any A € A. In par-
ticular, the link is a chamber complez.

Proof. Choose a fixed system of apartments A for A. Given A € A, let A’ be
the family of subcomplexes of Ika A of the form lky; A, where X' is an element
of A containing A. Any such subcomplex is a Coxeter complex by the result
cited above. So it remains to verify (B1) and (B2). Given B, B’ € lka A, we
can join them with A to obtain simplices AU B and AU B’ in A. Since A
satisfies (B1), there is an apartment X containing both of these simplices.
Hence lky; A is an element of A’ containing B and B’. This proves that A’
satisfies (B1), and the proof of (B2) is similar. O

Remark 4.10. The proof, together with the discussion in Section 3.2, tells
us how to get the Coxeter diagram of 1k A from that of A: If A has cotype
J C S and D is the Coxeter diagram of A, then the Coxeter diagram of 1k A
is the induced diagram D; with vertex set .J.

As in the case of Coxeter complexes, we can immediately apply the results
of Section A.1.4 involving residues:

Corollary 4.11. A is completely determined by its underlying chamber sys-
tem. More precisely, the simplices of A are in 1-1 correspondence with the
residues in C := C(A), ordered by reverse inclusion. Here a simplex A corre-
sponds to the residue C> 4, consisting of the chambers having A as a face. O
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Exercises

4.12. Show that every thin building is a Coxeter complex.

4.13. Let A be a building. For any simplex A € A, show that the residue
C(A)> 4 is a convex subset of C(A) in the sense of Definition 3.92.

4.14. (a) Given a simplex A in a building A, one could try to define the
support of A by choosing an apartment X' containing A and declaring
supp A to be suppy, A, where the latter is the support of A in X' (Defi-
nition 3.98). Show that this does not work. In other words, if X' and X’
are two apartments containing A, supps A need not equal supps, A.

(b) Show, on the other hand, that the relation “supp A = supp B” is a well-
defined relation on the simplices of A, i.e., if A and B have the same
support in one apartment containing them, then they have the same
support in every apartment containing them.

4.2 Examples

Almost all of the examples in this section will be defined as flag complexes,
so readers may need to consult Section A.1.2 for the terminology before pro-
ceeding.

Let P be a set with an “incidence” relation as in the section just
cited. Assume, in addition, that P is partitioned into nonempty subsets
Py, Py, ..., P,_1. Elements of P; are said to have type . Or, to use more intu-
itive language, elements of Py, P;, P, ... might be called points, lines, planes,
etc. If the incidence relation has the property that two elements of the same
type are never incident unless they are equal, then we will call P (together
with the partition and incidence relation) an incidence geometry of rank n.
(In some of the literature one requires, in addition, that every maximal flag
include an element from each of the sets Py, Py,..., Py—1.)

If n =1, then we just have a set of points, with no further structure; one
can think of it as a “line.” If n = 2, then P is a “plane” consisting of points
and lines, with some points declared to be incident to some lines. If n = 3,
there are points, lines, and planes. And so on.

In practice, of course, one is interested in incidence geometries that are
subject to certain axioms, such as the axioms for projective geometry or some
other kind of geometry. We will see below that different types of geometry
correspond to different types of buildings (where the type of a building is
determined by its Coxeter matrix).

We proceed now to the examples, starting with a case that is trivial but
nonetheless instructive.

Example 4.15. Suppose A is a building of rank 1 (dimension 0). Then every
apartment must be a O-sphere S°, since this is the only Coxeter complex of
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rank 1. In particular, A must have at least two vertices. Conversely, a rank-1
simplicial complex with at least two vertices is a building (with every 2-vertex
subcomplex as an apartment). Thus the rank-1 buildings are precisely the flag
complexes of the rank-1 incidence geometries with at least 2 points. [It is, of
course, reasonable to demand that a 1-dimensional space, or “line,” have at
least 2 points. In fact, one often even demands that there be at least 3 points,
which is equivalent to requiring the flag complex A to be thick.]

Example 4.16. Suppose A is a building of rank 2 (dimension 1). Then an
apartment X must be a 2m-gon for some m (2 < m < oco0). We will draw the

Coxeter diagram as
m

o—" o5
which should be interpreted as

o o
if m =2 and as

o—o0

if m=3.
Let’s begin with the case m = 2. Then every apartment is a quadrilateral:

(As usual, the two colors, black and white, represent the two types of ver-
tices.) It follows easily from the building axioms that every vertex of type e
is connected by an edge to every vertex of type o, i.e., A is a complete bi-
partite graph. In the language of incidence geometry, A is the flag complex of
a “plane” in which every point is incident to every line. Conversely, the flag
complex of such a plane is always a rank-2 building (with m = 2), provided
that there are at least two points and at least two lines.

Note that we can also describe A as the join of two rank-1 buildings. This
suggests a general fact:

Exercise 4.17. If A is a building whose Coxeter diagram is disconnected,
show that A is canonically the join of lower-dimensional buildings, one for
each connected component of the diagram.

Returning now to Example 4.16, suppose next that m = 3. Then every
apartment is a hexagon, which we may draw as the barycentric subdivision
of a triangle:
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This picture suggests a configuration of three lines in a plane (one line for
each o), whose pairwise intersections yield three points of the plane (one for
each o). The existence of many such apartments, as guaranteed by (B1), makes
it plausible that A is the flag complex of a projective plane. Recall the defin-
ition of the latter:

Definition 4.18. A projective plane is a rank-2 incidence geometry satisfying
the following three axioms:

(1) Any two points are incident to a unique line.
(2) Any two lines are incident to a unique point.
(3) There exist three noncollinear points.

With this definition, it is indeed the case that our building A is the flag
complex of a projective plane. You may find it instructive to try to prove
this as an exercise. [The exercise is not entirely routine; if you get stuck, you
will see it again in Exercise 4.46.] Conversely, the flag complex of a projective
plane is a building, with one apartment for every triangle in the projective
plane. This converse is a routine exercise.

The most familiar example of a projective plane is the projective plane
over a field k. By definition, the set Py of “points” is the set of 1-dimensional
subspaces of the 3-dimensional vector space k3; the set Py of “lines” is the set
of 2-dimensional subspaces of k3; and “incidence” is given by inclusion, i.e., a
point x € Py is incident to a line L € P, if 2 < L as subspaces of k3.

It is now easy to construct concrete examples of buildings. Let P be the
projective plane over Fs, for instance, where Fy is the field with two elements.
This plane is also called the Fano projective plane. It has 7 points (each on
exactly 3 lines) and 7 lines (each containing exactly 3 points). The resulting
flag complex A is a thick building with 14 vertices and 21 edges. We will see
in Exercise 4.23 below that the points of P can be put in 1-1 correspondence
with the 7th roots of unity ¢/ (¢ = e*™/7, j = 0,...,6) in such a way that
the lines of P are the triples {¢7, ¢, (773}, j = 0,...,6. This leads to the
picture of A shown in Figure 4.1. The interested reader can locate some of
the apartments (there are 28 of them) and verify some cases of the building
axioms.

Remark 4.19. This picture is misleading in one respect; namely, it fails to
reveal how much symmetry A has. One can see from the picture that A admits
an action of the dihedral group Di4, but in fact Aut A is of order 336. The
subgroup Autg A of type-preserving automorphisms is GL3(F3), which is the
simple group of order 168.

Continuing with Example 4.16, one could analyze in a similar way the
buildings corresponding to m = 4, 5,6, .... Each value of m corresponds to a
particular type of plane geometry.

Definition 4.20. An incidence plane P is called a generalized m-gon if its
flag complex is a building of type Is(m).
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Fig. 4.1. The incidence graph of the Fano plane.

The terminology comes from the fact that P has formal properties analo-
gous to those of the geometry consisting of the vertices and edges of an m-gon.
See Van Maldeghem [264] or Tits—Weiss [262] for more information. See also
Proposition 4.44 below, where we spell out precisely what it means for the
flag complex to be a building of type Is(m).

Generalized 3-gons are also called generalized triangles. Thus a generalized
triangle is the same thing as a projective plane. Generalized 4-gons are also
called generalized quadrangles or polar planes. A generalized quadrangle has
no triangles, but there do exist lots of quadrilaterals. Every quadrilateral
yields an apartment in the flag complex, this apartment being an octagon
(or barycentrically subdivided quadrilateral). See Exercise 4.24 below for a
concrete example of a generalized quadrangle.

Finally, in case m = oo, buildings of type Iz(c0) are simply trees with
no endpoints (where an endpoint of a tree is a vertex that is on only one
edge). To see that such a tree is a building, simply take the apartments to be
all possible subcomplexes that are lines (i.e., co-gons); the verification of the
building axioms is a routine matter. The converse, that every building of this
type is a tree, is more challenging. We will treat it in Proposition 4.44 below,
along with our characterization of generalized m-gons for m < oco.

The two remaining examples are intended to provide a brief glimpse of
some higher-dimensional buildings from the point of view of incidence geome-
try. Details (including definitions of some of the terms), will be omitted; these
can be found in Tits [247]. (See also Scharlau [207].) We will, however, give
many details for the most important case in the next section. And we will
show in Chapter 6 how to construct further examples of buildings via group
theory rather than incidence geometry.

Examples 4.21. (a) If P is an n-dimensional projective space, then its flag
complex is a rank-n building of type A,, i.e., having Coxeter diagram
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o—o—o—...—o———o0 (n vertices).

Every apartment is isomorphic to the barycentric subdivision of the bound-
ary of an n-simplex, and there is one such apartment for every frame in the
projective space (where a frame is a set of n 4+ 1 points in general position).
Conversely, every building of type A, is the flag complex of a projective space.
When n = 2, this example reduces to the case m = 3 of Example 4.16.

(b) If P is an n-dimensional polar space, then its flag complex is a rank-n
building of type C,,, i.e., having Coxeter diagram

RPN S (n vertices).
Every apartment is isomorphic to the barycentric subdivision of the bound-
ary of an n-cube (or n-dimensional hyperoctahedron), and there is one such
apartment for every “polar frame” in the given polar space. Conversely, every
building of type C,, is the flag complex of a polar space.
When n = 2, this example reduces to the case m = 4 of Example 4.16.

Remark 4.22. It is no accident that all of the examples in this section (except
trees) have been defined as flag complexes. Indeed, we will see in Exercise 4.50
below that every building is a flag complex.

Exercises

4.23. (a) Let V be a 3-dimensional vector space over Fo, and let P = P(V)
be the projective plane in which the points are the nonzero vectors in V'
and the lines are the triples {u, v, w} with v+ v 4w = 0. Show that P is
isomorphic to the projective plane over F.

(b) Let A(V) be the flag complex of P(V'), with its canonical type func-
tion. If V* is the dual of V', show that the correspondence between sub-
spaces of V' and subspaces of V* induces a type-reversing isomorphism
A(V) =2 A(V*). Consequently, any isomorphism V =& V* induces a
type-reversing automorphism of A(V). If the isomorphism V =& V*
comes from a nondegenerate symmetric bilinear form on V', show that
the resulting automorphism of A(V) is an involution.

(c) Let V be the field Fg, viewed as a vector space over Fy. Show that there
is a 7th root of unity ¢ € Fg such that the lines in P = P(V) are the
triples L; = {¢*, ("1, ("3), i € Z)TL.

(d) With V' = Fg as in (c), recall that there is a nondegenerate symmetric
bilinear form on V given by (z,y) = tr(zy), where tr: Fg — Fs is the
trace. This induces a type-reversing involution o of A = A(V) by (b).
Show that o is given on vertices by ¢? < Lg_;. Describe ¢ in terms of
the picture of A in Figure 4.1.

4.24. In this exercise we will use some standard algebraic terminology con-
cerning bilinear forms. Readers not familiar with this terminology can look
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ahead at Section 6.6, where all the terms are defined. Let V be a 4-dimensional
vector space over the field o, with basis ey, e, f1, fo. There is a nondegenerate
alternating bilinear form (—, —) on V such that

<6i,fi> = <fi76i> =1

for ¢ = 1,2 and all other “inner products” (u,v) of basis vectors are 0. The
purpose of this exercise is to construct a generalized quadrangle @ from V'
and (—, —). The points of Q) are defined to be the nonzero vectors in V', and
the lines of () are the 2-dimensional totally isotropic subspaces of V. A point p
is incident to a line L if p € L.

(a) Show that there are 15 points, each incident to 3 lines, and 15 lines, each
incident to 3 points. Thus the flag complex A of @ has 30 vertices and
45 edges.

(b) Show how to use the four given basis vectors to construct a quadrilateral
in Q and hence an octagon in A. This octagon will be called the standard
apartment. More generally, any four vectors in V' with inner products like
those of the basis vectors give rise to an octagon in A called an apartment.
[Four vectors of this form are said to form a symplectic basis of V]

(c) Show that A is a building of type I»(4).

(d) Call two vertices of A opposite if there is an apartment Y containing
them and they are opposite in X' in the obvious sense (recall that X' is
an octagon). Show that two vertices are opposite if and only if (i) they
are noncollinear points of @ or (ii) they are nonintersecting lines of Q.

(e) Show that A contains 5 vertices (but not 6) that are pairwise opposite.

4.3 The Building Associated to a Vector Space

Let V' be a vector space of finite dimension n > 2 over an arbitrary field k.

Definition 4.25. The projective space associated to V' consists of the nonzero
proper subspaces of V', two such being called incident if one is contained in
the other. (This is an example of a projective space of rank (n — 1).) Let
A = A(V) be the flag complex of this projective space; thus the simplices are
chains

VMi<W< <V

of nonzero proper subspaces of V.
The maximal simplices of A are the chains
Vi<Vo<. o<V, (4.1)

with dimV; = ¢. In what follows we will find it notationally convenient to
set Vo = 0 and V;, = V. We will call the maximal simplices chambers, even
though we do not yet know that A is a chamber complex.
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The purpose of this section is to outline a proof that A is a building,
as claimed in Example 4.21(a) above. By a frame in V we will mean a set
F ={L,...,L,} of 1-dimensional subspaces of V such that V' = L1 ®- - -® L,,.
Given such a frame, consider the set of subspaces V' of V' such that V' is
spanned by a nonempty proper subset of F. Let X(F) be the subcomplex
of A consisting of flags of such subspaces. Call a subcomplex of this form an
apartment. When n = 3, for example, every apartment is a hexagon, as shown
in Figure 4.2. We now proceed with an outline of a proof that A is a building.

Ly
L1+ Lo L1+ L3

f
M

Ly + L3

Fig. 4.2. An apartment when n = 3.

Let Xy be the flag complex of the poset of nonempty proper subsets of
{1,2,...,n}. This is a Coxeter complex of type A,_1, as we explained in
the solution to Exerci